
/t/A S f_ _ - / 7 7 _ 0 ::::,
CSC,'SD-81/6019

GODDARD

('(3MAS) PRIMER

MISSION ANALYSIS SYSTEM

{NASA-C£-177903) 6OD£A._D MISSION &NALYSIS

SY£TEM _GM&S) P_I_EB [Computer Sciences
CcEp.) 177 p

00/6 1

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Goddard Space Flight Center

Greenbelt, Maryland

N87-7021b

Unclas
42925

CONTRACT NAS 5-24300

Task Assignment 905

MAY Ig81

l

COMPUTER

CSC
SCIF.,NCES C.ORP_R.&'] 'ION

CSC/SD-81/6012

GODDARD MISSION ANALYSIS SYSTEM

(GMAS) PRIMER

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contrac_ NAS 5-->4300

'['ask Assignment 9(]5

Prepared by:

Quality Assured by:

•I., ,L,
". A. Snycer -- -" ba_e

Approved by:

A. L. Green

Sec-_ion Manager

Date

/,_ ,'9, / . . p.. k._.__2, _
R. 5. Headrick

Department Manager

.--/i//
o .' _ /l ,

Da_e

ACKNOWLEDGMENTS

The author wishes to acknowledge F. E. McGarry, C. R. Newman,

and J. S. Watson of Goddard Space Flight Center for their

direction and guidance in the preparation of this document.

The author also thanks G. A. Snyder, J. E. Fry, and

A. L. Green of Computer Sciences Corporation (CSC) for their

help and support and H. Shepard of CSC for her excellent as-

sistance in the editing and production of the document. In

addition, the author would like to acknowledge all the users

of the Goddard Mission Analysis System (GMAS) who generously

supplied valuable input that ultimately affected the style

and content of this primer.

iii

ABSTRACT

This primer provides an introduction to the Goddard Mission

Analysis System (GMAS). The primary objective of this docu-

ment is to familiarize the reader with the fundamental oper-

ational mechanics of GMAS. The treatment of the subject

matter is kept at an elementary level. Therefore, this

primer is by no means an exhaustive study of GMAS capabili-

ties. Basic information about propagating orbits, creating

utilities, and generating automatic sequences is presented

in a tutorial fashion with illustrations, examples, and ex-

planations.

v

TABLE OF CONTENTS

Section 1 - Introduction i-i

i.i Document Purpose and Use i-I

1.2 Document Overview 1-2

1.3 GMAS Overview 1-2

1.3.1

1.3.2

1.3.3

GMAS Defined 1-2

GMAS Capabilities 1-3

GMAS Advantages 1-4

Section 2 - Sample GMAS Deck 2-1

2.1 Problem 1 2-I

2.2 Card l)eck Lur Problem I ' {

Initial T,_T :,_r,

c;N;\Z llIput Cards £- /

NAMELI ST Cards 2 -_

Automatic Sequence Cards 2-7

2.2.3 Final JCL Cards 2-10

2.3 Resultinq Printouts 2-10

Section 3 - Usin 9 GMAS to Propaaate a Satellite Orbit, _-i

3.1 Propagation Control Input 3-1

3.i.i Input 5tale • 3-i

Variable Description 3-!

Example of Variable Use 3-._

3.1.2 Progagator Options 3-4

Variable Description 3-4

Example of Variable Use . . . 3-4

3.1.3 Stopping Conditions 3-5

Introduction 3-5

Variable Description and

Examples of Use 3-5

3.1.4

3.1.5

3.1.6

Output Opt: :ns 2-1L

General Fi_::s 3-i6

Orbit Propaca_ion input E,,:amp!es 3-16

vii

TABLE OF CONTENTS (Cont'd)

Section 3 (Cont'd)

3.1.6.1

3.1.6.2

3.1.6.3

Problem 2 3-16

Problem 3: Station Coverage. . 3-21
Problem 4: Shadow Studies. . . 3-2_

3.2 Force Model Input 3-26

3.2.1

32 _

3.2.3

Force Model Changes for Earth-Centered

Orbits 3-26

Force Model Changes _or Moon-Centered
Orbits 3-30

Force Model Input Example 3-3_}

3.3 Steps in Propagating an Orbit With GMAS: A Sum-

mary 3-34

Section 4 - Automatic Sequences 4-1

4.1 Automatic Sequence Cards 4-1

4.1.1 Utility Cards 4-3

Example of Utility Card Use . . 4-3

Core Requirements 4-5

NAMELIST Input Cards 4-7

Dynamic Array Cards 4-8

Examples ot Dynamic Array Al-

location 4-9

Rules for Positioning Dynamic

Arrays in Automatic Se-

quences 4-11

4.1.4 Logical Directive Cards 4-12

4.1.4.1

4.1.4.2

4.1.4.3

4.1.4.4

LABEL XXXXXX 4-!Z

LOOP TO XXXXXX,I 4-13

GO TO XXXXXX 4-13

IF (X.op.Y) GO TO XXXXXX 4-14

4.1.5 Cerement Cards 4-16

4.2 Examples of Automatic Sequence Card Use 4-26

Problem 6 4-16

Problem 7 4-19

viii

TABLE OF CONTENTS (Cont'd)

Section 5 - Special Uses of GMAS 5-1

5.1 ORBIT File Creation and Reading 5-1

5.1.i

5.1.2

5.1.3

ORBIT File Defined 5-1

Writing an ORBIT File 5-2

Readina an ORBIT File 5-5

5.2 Satellite State Element Conversion 5-6

5.3 Orbital Parameter Comparison Graph Creatlon 5-8

5.4 Monte Carlo Analysis 5-16

5 5 Targeting and Optimization. 5 -_

5.6 Averaged Orbit Propagation 5-28

Section 6 - Creation of GMAS Modules 6-1

6.1 Creation of Utilities 6-1

6.1.1 Example l: Utility With NAMELIST Input• . 6-4

Creating the Utility. 6-4

Usina the Utility in a GMAS

Automatic Sequence 6-S

6.1.2 Example 2: Utility With Dynamic Array

Input/Output Using Routines COMPUT,

FECHDA, and STORDA 6-9

Creating the Utility 6-9

Uslng the utility in a UMA_

Automatic Sequence 6-1Z

6.1.3 Example 3: Utility With Dynamic Array

Input/Output Using the Subroutine Ar-

gument List 6-13

Creating the Utility. 6-!2

Using the Utility in a GMAS

Automatic Sequence 6-16

6.1.4 Example 4: Utility With Dynami_ A_ray

Input/O,_tput Using r.he A_G Card 6-16

_c_atinc z_ gt _v 6-17

Using the Ut'_i!z'/ in a k AS

Automatic Jecuence 6-i_

_..2 Mcdificaticn cf Existing U_ili-_.es 6-19

ix

TABLE OF CONTENTS (Cont'd)

j

Section 6 (Cont'd)

6.3 Creation of Special Output Parameter Modules• . . 6-22

6.3.1 Creating the SPOUT Routine and the Spe-

cial Output Parameter Module 6-_3

Writing the SPOUT Routine . . . 6-2J

Creating the Special Output

Parameter Module 6-25

6.3.2 Using the Special Output Parameter Mod-

ule in a GMAS Automatic Sequence 6-26

6.4 Creation of Parameter Modules 6-27

6.4.1 Constructing the Parameter _.!odule 6-2_

Constructing the Hain Routine

of the Parameter _odule . . . 6-28

Creating the Parameter Mod-
ule . _' 6-30

• • • • . • • • • • • •

Using the Parameter Module in a GMAS

Automatic Sequence 6-30

Miscellaneous Aspects of User >!odule

Creation 6-31

6.5 Use of GMAS Service Routines in User Load

Modules 6-3i

Section 7 - Miscellaneous GMAS Capabilities 7-1

7.1

7.2

7.3

7.4

GMAS Interactive Mode 7-1

GMAS Automatic Sequence Libraries 7-1
GESS Executive 7-2

IOHAND 7-2

References

x

LIST OF ILLUSTRATIONS

Figure

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

4-1

4-2

4-3

4-4

4-5

4-6

5-1

5-2

5-3

5-4

5-5

5-6

6-1

6-2

6-3

6-4

Sample GMAS Deck 2-2

Computer-Printed Job Summary 2-5

First Page of Computer Printout 2-11

Messages From the Computer 2-12

GMAS User input 2-15

GMAS News 2-16

GMAS Merged Automatic Sequence 2-17

List of GMAS Abbreviations 2-18

GMAS Parameter Report 2-19

Stopping Configuration 3-8

Multiple Stopping Condition Ccn[iguration 3-IC

Level 1 Output (NOUT=I) 3-13

Level 1 Output With Brouwer _lean Elements

Level 2 Output (NOUT=2) 3-!4

Level 3 Output (NOUT=3) 3-14

Sample Output Parameter Report for NOUX=4 . 3-15

Parameter Output Results From Problem 2 Run 3-22

Parameter Output Results From Problem 3

(Station Coverage) Run 3-25

Parameter Output Results Frcm Problem 4

(Shadow Studies) Run 3-27

Parameter Output Results From Problem 5 Pun . . 3-25

Accessing Utilities 4-6

Printed Output From Problem 6 Pun 4-20

Logical Flow for Problem 7 4-21

Printed Output From Problem 7 Run 4-27

GMAS Automatic Seuu_nce fo_ Plot So_u_L_-- to

Problem 7 4-26

Problem 7 Plots 4-38

Printed Output From Element Conversion Run. . . 5-9

Logical Flow of Orbital Element Comparison

Graph Automatic Sequence 5-10

GMAS Comparison _esults 5-17

GMAS Comparison Graph 5-i_

Monte Carlo Program General Flow and Basic

Input Variables _-19

Primary Targeting and Optimization Variables. . 5-[4

Building a Utility 6-3

Example 1 Results _-i0

Example 2 Results :_-14

Example 4 Results _-20

xi

LIST OF TABLES

Table

3-1

3-2

3-3

4-1

5-2

5-3

Sample Stopping Logic 3-10

Stopping Conditions for Problem 2 3-20

Frequently Used Dynamics Variables 3-29

GMAS Utilities 4-4

Monte Carlo Program Variables 5-2!

Frequently Used Targeting and Optimization

Variables 5-25

xii

SECTION 1 - INTRODUCTION

i.i DOCUMENT PURPOSE AND USE

This primer provides an introduction to the Goddard Mission

Analysis System (GMAS). The primary objective of this docu-

ment is to familiarize the reader with the fundamental op-

erational mechanics of GMAS. The reader is assumed to have

a working knowledge of the basic principles of astrody-

namics. For example, the text contains references to or-

bital elements, coordinate systems, and spacecraft dynamics

without any special explanations.

Tthis primer is intended to be comprehensible to persons with

very little computer background. For this reason, allusions

to the internal software workings of the system have been

avoided. To avoid apparent ambiguity and confusion, this

primer presents a very structured approach to the operation

of GMAS. Although the methods described in this document

may not be the most efficient or "clever" ways to solve

particular problems, they are the most straightforward. The

more experienced user of GMAS may become more pragmatic in

some of the rules so strictly adhered to in this document

can be relaxed or even ignored. He may also discover ways

to manipulate GMAS internal software that greatly facilitate

the solution to his problem. This, however, is beyond the

scope of this document. A comprehensive description of GMAS

can be found in the GMAS System Description (Reference i) or

the GMAS User's Guide (Reference 2).

To use this primer most effectively, the reader must have

the follewing documents: (I) the GMAS User's Guide (Refec-

ence 2) and (2) the GMAS Software Resource,s document (Refer-

ence 3) and its update supplements (Reference _ 4 and 5).

Many references are made to the contents of _hese documen%s

i-i

in this primer. The appendixes at the end of the User's

Guide are crucial for any GMASwork.

Most of the content of this primer is supported by ex-
amples. To obtain the maximum benefit from this document,
the reader should

I. Obtain the GMASUser's Guide and the GMAS Software

Resources document to use in conjunction with the

primer.

2. Read each section of the primer. Run the examples

in each section on the computer. Determine whether

the results obtained are the same as those speci-

fied in the primer.

3. Experiment by varying the input in the examples.

1.2 DOCUMENT OVERVIEW

This primer is composed of seven sections. The remainder of

Section 1 provides some general information about GMAS.

Section 2 describes a sample GMAS deck. Section 3 specifies

the steps necessary to propagate a satellite orbit using

GMAS. Section 4 describes the creation of an automatic se-

quence. Section 5 discusses the use of special GMAS capa-

bilities in solving mission-related problems. Section 6

specifies the steps necessary to build a user module.

Section 7 discusses various miscellaneous GMAS features,

including automatic sequence libraries and the interactive

mode.

1.3 GMAS OVERVIEW

1.3.1 GMAS DEFINED

GMAS is a collection of computer programs _ftware) that

are currently stored on an IBM S/360 compute, located in

Building 3 at Goddard Space Flight Ceztgr _I?C). Input to

GMAS is usually punched on cards and _3 !_ _ e form of a

.2

1-2

program (as opposed to data inputs. The GMAS input is
called an automatic sequence. GMAS is primarily used to

solve mission analysis problems.

1.3.2 GMAS CAPABILITIES

GMAS has a number of capabilities, including the following:

• GMA_ can simulate satellit_ orbits with aroitrary

orol_al elements, rorce mouels, and stopping criteria. The

user may choose from an assortment of propagators or design

his own propagator to suit his mlssion-specific proolems.

_lany uif£_rent levels of orbital information printouts are

avallaDle to the user. If the standard GMAS assortment of

output parameters is not satisfactory, the user may develop

his own output.

• GMAS can perform shadow and station coverage

studies. It can create (or read) orbit (ORBIT) files and

reaa ephemeris (EPHEM) files.

• G_S has a graphing capability that can be used to

generate comparison graphs of selected orbital parameters of

two satellites.

• GMAS has a tarqetinq and optimization capability

tna_ can De used by mission analysts to target maneuvers.

GMAS has a Monte Carlo error analysis package for

performing statistical studies.

The most useful aspects of GMAS are its flexiDility an_ ver-

satlli_y. Wl_n tne input capability (automatic sequencesj,

_ne user can string together any collection of storea roa-

tines (utilities) in any desired configuration. These

utilities can also communicate through special communication

va[iaoles (dynamic arrays) . The combined use of the 5>[AS

itiiih_es and user-provided utilities makes the capa=[__%ies

of GMAS virtually unlimited.

!-3

1.3.3 GMAS ADVANTAGES

Some of the advantages of using GMAS are as follows:

• Software development time savings--Many other so_t-

ware systems (e.g., the Research and Development Goddard

Trajectory Determination System (R&D GTDS)) are hard coded.

For such systems, extensive software work is often necessary

even for a relatively small alteration. GMAS is modular-

ized; thus the user can concern himself with the creation or

enhancement of a particular module without having to worry

about the effects it will have on the entire system.

• Core savings and efficiency--Through modulariza-

tion, GMAS is able to operate much more efficiently than its

cumbersome counterparts, which may be laden with unused or

dead code. Since GMAS programs require less computer memory

(core), their turnaround time is more rapid.

• Stability--Because of its modularization, GMAS is a

very stable system. It does not suffer from having "too

many chefs in the kitchen." Each user creates his own util-

ities and stores them in his own private library. The sys-

tem itself therefore requires little maintenance. System

enhancements are developed by a small, coordinated group.

• Size--The effective size of GMAS is limited only by

the size of the user's utility library. The user can do his

library work on timesharing option (TSO) and make background

runs to test his utilities.

• Flexibility--Under control of the automatic se-

quence, GMAS can perform a number of tasks (utilities),

transferring information from one task to another. These

tasks can be arranged in different orders, and sequences of

tasks can be performed until certain conditions are me_. [n

large, hard-ccded, inflexible systems, software work _ust be

i-4

done for each described arrangement. In smaller, more flex-

ible systems, the user is often forced to transfer informa-

tion manually, which may be detrimental to efficiency and
accuracy.

1-5

SECTION 2 - SAMPLE GMAS DECK

GMA_ can oe run on the IBM S/360 computer with a deck of

caras (patch mode). Figure 2-1 shows a deck of Hollerith

cards that can be used to simulate a satellite orbit with

GMAS. Each Hollerith card has 80 columns. These cards can

De typed (punched) on a keypunch.

Section 2.1 states Problem i, a mission analysis problem.

Section 2.2 describes the card deck that can be used to

solve this problem. Section 2.3 provides examples of the

printouts resulting from the use of this deck.

2.1 PROBLEM 1

Given the following, propagate the orbit of a satellite for

1 aay ano print out the default information, which includes

1
the Keplerian and Cartesian coordinates:

Epoch:

Elements:

Coordinate system

of input:

Propagator:

Force model:

July 29, 1980; 07:09:58.4 Greenwich

mean time (GMT)

Cartesian:

x = 7000.0 kilometers

y = 200.0 kilometers
z = 300.0 kilometers

= 0.0 kilometers per second

= 3.3 kilometers per second

z = 8.0 kilometers per second

True Earth equator and equinox of

date

Fixed-step Cowell (step size =

i00 seconds)

4-by-4 Earth field, no drag or solar

radiation pressure, effects of Moon

and Sun included (default)

IDefault output is called level 2 output. Table C-id of

the User's Guide provides a complete description of level 2

output.

2-1

/'//

/ /::

/EOF

ORBIT

/ $END

/' STPVAL=_6400.,

ISTOP=I,

// H=100.,

PROPM=ICOWELLf "

/ 0.,3.3,8.0,

/ T000.,200.,3UO.,

/ ELEM:8OO729.,O70958.a,

[ELEM=I,

// 80RBIN

ORBINP

/ PRFCON

DR[VE1

/ _GMASEX SEQNAM='CARDS_,[BATCH=I,_END

/ ¢CONTRL IFTUBE=50, IFTA8LE=_9,[FTPRT=9,_END

��GO.DATA5 DD :¢

/ // EXEC GMAS,REGION.GO:376K

//::FORMAT PU,DDNAME=,DEST=ANYLOCAL

///:=FORMAT PR,DDNAME=,DEST=ANYLOCAL

/ //ZBNAMAAA JOB CHQTTI23QSL,M,H40592,HO0001),95.FFF

2S

24

23

22

21

20

19

_8

1"/

16

lS

14

t3

12

tl

10

9

8

7

6

S

4

3

2

|

I;

Figure 2-1. Sample GMAS Deck

2-2

_. _ CARD DECK FOR PROBLEM 1

The deck of cards illustrated in Figure 2-1 can be used to

solve Problem I. This deck includes 25 cards: 5 initial

job control language (JCL) cards, 18 GMAS input cards, and

2 final JCL caras. Each of these cards, numbered in text

ana in Figure 2-I for convenience, is discussed oelow. In

tnls aiscussion, the underlined portions of the card formats

represent areas tnau may De changed from run to run at the

user's aiscretion.

z.2.i INITIAL JCL CARDS

?z_st, the user must provide some cards that give the com-

pu5er the information it needs to run his job. Cards that

give the computer this information are called JCL cards.

Azl JCL caras contain slashes (//) in their first two

columns.

Eac_ of the five initial JCL cards is described below.

• Card 1--The first card in the deck is called a _B

cara. Its format is as follows:

col. i

•.4&._&_&igJln_'-_4t-%l %,1%./;,.,3 _£A_I I.L_...._'J_..I&.JtI'J_fI,L*'T_ _., &_LUUUU , e_ J,. I

user 3oh accounting time output
ID ID information limits box

ZBNAM Is the user's identification (ID). This tells the

computer WhO is running this joo. If tile user does not nave

an iO, ne must apply for one.

AAA !s the joD ID. The user may 'ase any three i__t&ers and,/

or numbers in these columns. (The user IDanc the joO iD

appear at the top of %he first page of computer printout

_nae _.esuies from the ccmputer run (see Section 2.3;. If

:he a£er is ma.<ing sever_l runs, ne can identify them

quic.<iy and easily Ov choosing appropriate job iDs. _

2-3

JOB tells the computer tna_ this car_ is a JOB card.

HQ7712345L,M,H40592 is accounting information. These num-

bers are supplied to the use_ and remain constant unless

some authorization cnange occurs.

H00001 specifies the time limits for the run. Computer time

falls into two categories: central processing unit (CPU)

and input/output (I/O). CPU time is the amount of time the

computer spends processing the information it receives. I/O

time is the amount of time the computer spends collecting

and dispersing this information and printing out the re-

sults. In this example, the user has allowed a maximum of

i/2 minute (H00) of CPU time and 1 minute (00!) of I/O

time. If the program being run exceeds either of these

limits, the computer will not complete tne 3oo, and the user

will get the run back only partially completed with an error

message. The easiest way for the user to determine what

numoers Should go in this area is to look at the bottom of

the last job summary printout page of a similar run, where a

summary of the CPU and I/O time used is provided (see Fig-

ure 2-2). The user should keep in mind that the computer

gives snorter jobs priority over longer jobs. Therefore, it

is uA_wise fo_ a us_ Lo specify CPU-I/O _equi_emei_,ts of, fo_

example, 005005 if the job can be run in less than 001001.

95.FFF specifies the box in which the computer staff is to

put the run printout.

More detailed information on the format of the JOB card can

oe found in Reference 6.

• Cards 2 and 3--The two JCL cards following the JOB

card tell the computer on which device(s) it is to generate

the printed and/or punched output. These two cards shoui_

be included in the deck if the output from _he rdn _s _o De

2-4

lET 237 i
1EPZ3?I

11[I1|37 l
ICW23? !
[EF237!

l_m_3T!
IEP 23T !

IEP2371
IEP237|
IWP23T|

1118;131'1
IEF237|
IIPI3T I
IEll_371

IIC 130 !
IEFi411

lip llS !
IIP2851
IEF21iSi

liP/Ill
lip IIS !
lip Iltl
IIFIlli

It[Fletl
IIP2115I

IEP 2es i
IEF Ill I
lip 285 I

1tP2851
1_F2851
IEF2ISI

1EP 2851
IEPlall
IEF2851

i[P2551

IEF2851
lIP 285 !
IEPIISI
II+25li

IIF2ISl
IEFIISi
IEF2115 I

IIF 21_I I
IIFIIIII

IEF21Sl
llp =IS I

IIP2611
llF lSl I
IIF 211_11

llPllIl
IIF2115 I
llp :'85 i
I1[I I Ill !

lip 21SSl I
fill 2551

liP +Ill
1IP2851

lip 255 I
II P 209 i
|IIr llS4J i

lPff 211!_ I
• Ill" lllS I

IE_ 11151
lIP 21161

IEl1111111
ItF 21151
IIP2151

1 IF 2115 I
ItFllSi
1EP 288 I
oeo

451 ALLOCATED YO PYIPP001
2_3 ALLOCATED TO PII6F001

411_ ALLOCATED Y* lYl�lmGOl
335 ALL0¢AT[O TO PT20POQI
335 A_LOCATIO YO FT21ff001

338 ALLOCAI_D TO ff_12ff00*
_43 ALL0¢ATIO TO P?2_ff00|

450 ALLOCATED TQ FY25_QQI
335 ALLOCATIO TO PT3OP00l
45I AI_.OCATIO Y* FT38POOi

41q A4.LO4_lrlO TO PT6q_OOl
333 &LJ.GCATED TQ GISS_IG
452 ALL0¢ATIO TO

762 AI.L.OCAI_[O TO S?SPNINT
FTS0F001 00 ITATINIkT NI$S|NG
-- STEP HAS IXICUYIO -- CQNC COOt 0000

GJMAI*GOeLOAO KEPT
VO4. SIR _So CISKI?*

GJNAS*GOeLOAO KIPT
VQL SIR NOIm 0|$K1?*
GJNAS*UTILITY*O&T& KtPF
VOI. sLrN _lOSa CISKO_o

5YSSI008*TITII25*RV+OI* ZBft&_AAA *IXICF|LI DELETED
VOI. $lN t405: $¢NQ0|*
IY$e|008. TITII25.RV00i. ZINJ_IAAA eI_RK OL£1ITED

V0L SIR NOIm SCROOI*
GJNASeAUTO$IQ.OAT& K_PT
rot. SIR NOS= OlSKIT*

YSI00i*TlYli25*RV001"* /Bt4AMAAA *ASPl000I OELET[0
VOL SIR _'_3= 01264R.
SYSOIO06*TtrlI25*RV001o ZDNA_AAA *ASP0AOOI OELITIU

¥OL SIR _S_ ASP?60*
Y8100e*llTl125*_V00t. _SNAI4AAA *O_S_Y 0b'31T[O

VOL SIR NO$_ 5CR0Ol.
SYSIiO00*TIPII2SoRV001o :SN&MAAA 0_0_00_ OILI_I_

GJNA$.OYNAMIC$eD&TA K_PT
$1_ NQIa 0|3K0q.

IYSII002*T|TI|25*NV00|. ZBNA_AAA *OYN O(_ITID
YOL SIN ROSa 5CN001*
0RI|T*GTDSeSLP|U20*0ATA KEPT

VOL SER NO$8 0|$K00.
0_BITeGTOSeJACC_|A*0ATA ,K_PT
vOL SIR NOS_ O|SRI�.

_J_A$.IR_MIG.0AY& KIPT
Y0t. SIR NOlo 0|$K02.

Y81008*I|TII2$*R¥001* ZINAHAAA *CURR O_2TED
VOL SIN NQ$_ SCRO0I.
_JN_SeNtM_eOATA K_PT

VOL SIR ROSa 0|$K0q.
ORI|T.GTO$.EARTIM_eO&TA K[PT
VO|. SIN *_K_58 0|$K|90
OR_iT.GTOS*_UNAN_D.D&T& _IPT

VOL $2_ N_lm 0lSKII.
ORRIT.GYOI*ATIIOIOIN.0ATA KI_T

VOt. SIR NOIu 015KI9.
SYSIlOOe. llTl|Z$*_VOOl* _NA_AAA *_00003_] OILITIO
VOL SIR _60$m $CNOOI.

GJ_AS.$TATIONoOATA KEPT
VO_ $1R _058 015K17*
ORSIT._TOS*D24HOUR.0AY& _[PT

VOL SIR NOI: 0|5K|9.
ORIIT*GTOI*TI_¢OF*OATA _IPT
VO[SIR NOS: 0|$KO0.
_J_A$.NONAISe0ATA K_PT

VOI- $1q ROSa 0IIKOq.
ATTIT .'_I$5M$_ . DATA KIPT

YO_ SIR ROSs GIiK$2*
GJMAS*GNAIRSG*0ATA K_PT
V0L SIR ROSa CISKQ2*

lee CtlARGI 'Ir+l"II

leo (/Q T _.ql IN SiC.
ere I/0 COUNTS
el* III G 101,1
ere IBK A_IA&/GO

mse
era
*** CHARGE T|_I_

8ee I/0 _ III_ IN SIC*

lee l/O CGUNT$
14111 ZINAMAAA

e_m _ASA_*GI/r¢ 360_95 G| SVS_I*4mt_VT-- 2t *

_OSOq JOB 2644 (ZBNA_AAA) IN IIRIAKOORN

OONl_lu$lIf_.l_ -| 3 [XCP$

DONAMIoSTIPL|8 --2 0 EXCP5

OONAMI_FTOIF001 1_ EXCP_

_ONA_ImFTOZF0O| • EXC_S

OONAMt_PTO3F30| _ _XCP5

OO_AMEmFTOAFOO| _ _XCPS

OONAMt_FT0_F001 4 _XCPS

DONAMImP_0_14=001 9 _XCP_

_ONAM_mFIOEli_O01) _XCR_

OOhAR_TOq_'O01 _0 EXCP5

OONANI_TIOF001 18 EXCRS

00NAMluFTI|F00| O EXCP5

OONAMImFT|4FOO| 3 EXCPS

DONANt_mFTISF00| O tXCPS

DONAR_aFT|TFO0| 0 EXC_$

DONAM_uFT|_Ii;OQI 1 &XCPS

ODNAMt_T|9_OOI 2 EXCP$

OOI_ANI[_i_T2OFOQ| O EXCPS

DOHARIsPT21FO01 0 _XCP_

DONANlm_T2_rJO| 0 ExCP5

DDNANImFT2bf'OQI 0 EKCP5

UUNA_ImFT2_I_O0| 0 EXCP5

D_NAMIm_rr3oFOOl _ IxC_5

DONA_Im_T3_c0O| 4 EqCPS

OONAMI[mlrT_gFoo| 4 [XCP$

OO_ARE[--G_[SS_SG -I * E_CPS

DDNAM_I_J_S_MSG --2 3 ExCPs

CPUaII$O*0T0 _|N |lOttllO.|80 _|k

0RUMIIe_0OO*86 _lSKmeteog._0 CF.L_-e_ImO.OQ TAI=4[meOIOQeQO GR&F_*m_Q.QQ ASP_seeee_.tq

TOTAL-IXCP_seooe3_ .|5C-OEV|CESmooooOOQ CARO_mOOOOO
STA_TmlS_K I_i_[_3_K _&_-USED_Q_44_ ;gERCI_T-uS_Om09|

STIR100| _GMmGMAS ST&RT_CI-OS--_I/I_e3$.J3 _YOPm01--00-_l/17.3G._3

O_mmuee_a*_o ul'3Kmlmllg.50 CELLmIeleO.0O TA_[--81IIO.00 CdRA_OI_eO.O0 ASP'_ees)_.49
TOTAL--IXCPS_O_*0325 UISC*0IVI¢tIt *celt00

RO4NmJ CLASSuA f_�TYm08 $TANT_Ql-08"41/I?*35.33 5TOPm0L-06--_t/t?,36023

PGR gN_LtN AS$|STA_I , CA_ _ ON 34_--_7G_

Figure 2-2. Computer-Printed Job Sum_nary

2-5

directed to the center facility for printing. The formats

of these cards are as follows:

col. 1

//*FORMAT PR,DDNAME=,DEST=ANYLOCAL

//*FORMAT PU,DDNAME=,DEST=ANYLOCAL

• Card 4--The next JCL card tells the computer to run

GMAS. The format of this card is as follows:

co/. L

// EXEC GMAS,REGION.GO= 7__

one blank space

REGION.GO tells the compute_ how much memory space (core) it

will need to run GMAS. Since GMAS is flexible in this _e-

gara, it is helpful for the user to know the size of region

required to run his application. If the user's application

requires a larger region than he specifies on this card, the

computer will not run the job. Most GMAS applications run

in less than 400K bytes of core. To propagate a satellite

orbit with a Cowell propagator requires only 376K b'/tes of

core. The user must try to be accurate in estimating the

core requirement. For the GMAS beginner, fixing the region

at 376K is safe. A more experienced user, however, will

vary the region size depending on his application. If

REGION.GO is omitted, the GMAS default region of 400K is

used. The easiest way for the user to determine the core

size necessary for his particular run is to look at the bot-

tom.of the last job summary printout page of a similar run,

where the core size used during the run is provided (see

Figure 2-2).

• Card 5--The next JCL card introduces the GMAS input

cards. Its format is as follows:

col. 1 one blank space

/_JO.DATA5 DD *

6w-

The format of thiS card always remains the same.

2.2.2 GMA5 INPUT CARDS

The GMAS input cards in this deck include 2 NAMELIST cards

ana 16 automatic sequence cards.

2.2.2.1 N_MELIST Cards

Tne f_rst two GMAS input cards (cards 6 ana 7 ot this deck)

are used for controlling the execution of GMAS. The ex-

perienced user can vary these cards, called N_IELIST cards,

to make use of certain GMAS capabilities. (These capabili-

ties are discussed in subsequent sections.) For the basic

operation of G_S using a card deck, tne user will not neeo

<o modlry the two N_MELIST cards, wnose formats are as fol-

lows:

col. 2

¥

_CON'I'RL IFTU_E=50,1FTA_L=49,1FTPRT=9,_END

&GMA_EX SEQNAM='CARDS',[BATCH=I,&END

2.2.2.2 Automatic Sequence Cards

The i_ automatic sequence cards (cards 8 through 23 of this

deck) are as follows:

• Cards 8 and 9--The first two cards of the automatic

sequence each begin in column i. The first (card 8) tells

GMAS to use the general-purpose driver, DRIVEl; the second

(card 9) selects the profile controller, PRFCON, to contrci

GMAS processing. All automatic sequences except those used

for targeting or Monte Carlo error analysis start with chese

two caras, WhOSe formats are as fgllows:

col. I

ORIVEI

PRFCON

• Caro 10--The nex_ c:::,

put processor (ORSINP_ , megl;s _:

._ :n se_ :cts =he orbit in-

' ,_amn OR--[I.P must i3e

2-7

used to enter information for an orbit propagation.
ORBINP card format is as follows:

col. 1

ORBI NP

The

• Card ll--The next card, called the &ORBIN card,
must follow the ORBINP card and must begin in column i.

Tnls card introduces a series of cards specifying input var-

ladles and tneir values. Its format is as follows:

col. 2

+

&ORBIN

• Cards 12 through 20--The next nine cards in this

deck contain input variables and their values, separated oy

commas. Appendix C of the User's Guide provides a complete

list of the &ORBIN variables, their default values, and

their definitions. The input deck only needs to include

cards containing those variables whose values the user

wishes to change. In this example (see Section 2.1), the

user nas set the following input variables and values:

Variable/Value

IELEM=I ,

Explanation

A value of i for variaOle IELEM

indicates that the epoch ele-

ments are Cartesian

A value of 2 for variable ICORD

indicates that the coordinate

system is true Earth equator and

equinox of date

ELEM is an eight-element array.

The first two positions contain

the packed year, month, day and

hour, minute, second of epoch in

the form YYMMDD.,HHMMSS.S; when

IELEM=I, the next six positions

contain the position and veloc-

ity of the satel!_te a_ the

specified epoch and in the

coordinate system speclf_ed _'.
variable ZCORD

ICORD=Z,

ELEM=800729., 070958.4,

7000. , 200. , 300. ,

0.,3.3,8.0,

2-8

Vat _aole/Vaiue

Pi_<)PM=' COWELL',

H=!00.,

ISTOP=I,

STPVAL=86400.,

Explanation

This specifies that che Cowel!
propagator is to be used to
propagate the orbit

This specifies that the step
size of the propagator is
i00 seconds

A value of i for variable ISTOP
indicates that propagation is to
stop wnen a specified time is
reached

Tnis specifies that propagation
is to stop at 86,400.0 seconds
(i day) from epoch time

• Card 2t--The &ENDcard, which signi[ies tne enri ()f

Lh_ oru[c illpuc [n[or'ination, must follow t_le L._st L_TpUt ',,at-

ladle cara. The &E_D cara mus_ begin in column 2. I_ for-

mat is as follows:

col. 2

& iND

• CaEd 22--The next cara, _he ORBIT card, tells GMAS

to prcpagate an orbit using the information given under

ORbINP aria une default information. This card must oegin in

columL_ i. it_ fU£Llldt i_ d_ Eoiluws:

col. i

+

ORBIT

• Card 23--The last card of the automatic sequence is

the end-of-file (EOF) card. All automatic sequences mus%

en(_ With tnis card. This card must begin in col&re.- .. Its

forma_ is as follows:

CO i . i
v

EUL'

2-9

2.2. 3 FINAL JCL CARDS

Two final JCL caras follow the GMAS input cards. These two
cards are as follows:

• Cara 14--The /* card indicates to the computer the

ena of tne GMAS input cards. Its use is optional. Wnen

used, the card must begin in column i. Its format is as

_ollows :

col. i

/.

• Cara 25--Tne last card of the deck, the // cara,

indicates to the computer the end of the user's job. This

card is used to separate one user's joo from another as ti_e':,

are read in with a card reader. All decks of cards sub-

mitcee to the computer must start with a JOB card and end

with a // card. The // card is usually flipped over before

it is punched. This helps the person operating the card

reaaer to distinguish between jobs.

2.3 RESULTING PRINTOUTS

Figures 2-3 through 2-9 show some of the computer printouts

resulting from use of the deck shown in Figure 2-i.

Figure 2-3 snows the first page of computer printout. The

Dold letters on this printout specify the user and run IDs.

Figure 2-4 snows three pages of messages from _ne computer.

The JCL input is printea on these pages along with a coi!ec-

clon of system information _nat can be ignored by the com-

puter novice. The computer usage summary located at_ the

bottom of the last page of Figure 2-4 specifies the CPU and

I/O time usea by the run. In cnis example, the run required

0.070 mlnute of CPU time and 0.!30 minute of I/O time.

These t=mes are important in :e--rmining the time limita-

clons to ce encerea on the JC __ -ara _or -+Jture runs.

&Z
_X
_Z

ZZ

e_

_4 _w

wq _

q_w

NNNP4 r_(M

NN N NN
NN _1 NN

NN N %N
NN (M r,le_
NN N {Mid
_N N r_d
N¢_ _INN
NN _IN_I
NNN _IN

((<_<<((((ee

q< _e_e_ee
(((_ _eeeee
<((<

(((<(<(<(<(• ee •
<<<((_((((

Z_ZZZZZ_ZZZZ _
ZZ _

_zz_z_zz _ _- __

N NNN
N_ N_N
_NN NN

NNNN _
NN NN NN
N_ _N _N
_N NN _
_N NN _N
NN NN _
N_ _NNN
N_ _NN
NNN _N
_NN N

Z_ZZZ_Z_Z_
z&

zl
Z_

Zl

J,J

0
4-)
r-

=
0
,j

L_
O

Q

_.J
_n

P_
I

_J

---I

[SV40 JOB CRIGIN FQOM _K_U_CSC * OSP_C_ * GEV|CE=GSFCSPOII Oa2

//e_OR_AT DAIOONAMEs_ESTm&_YLOCAL

//e_O_MAT PIJeDnNA_E:eOEST=A_YLOCAL
// _X_C GMA_*_E_IUN*GOs3?SK
//GO.GATA_ DO *

//

AL_Si_O_OOI/OISKi?30_4

L_CATE' 2_4_GJ_AS._Q.L_AO
AL26480_OOI/_lSKITO00_
LOCATE* 26a_GJNAS._rlLItV._rA

4L26480EO_I/_ISK_SO004
LOCAte* 2_a_GJNAS.AUT_S_O.OATA

_L26_80_OOI/OISKITO00_
LOCATE' 264_GJNaS.OVNA_|CS.3atA
AL26480[OOI/OISK09000_

LOCATe' 264SORRIto_TOS.SLPI_SO°O_tA
AL26480_OOI/DISK_O00)_
LOCATe' _6460RRIT.GtDS.JaCCHIA.OAr&
4L26480_OOIPOISKIgO004

LOCAr[. 2644GJ_AS.ER_SG.OaTA
AL264_OEOOt/OISK02000_

LOCATe* _a_GJNA$._.DATA
&L264qOEOOI/OISKOqO00_

LUCAT_' Z_4_tlR_I r*_O_*LUhA_FL_.OAIA
AL 2648,)_ 00 I /0 I 5K I)0004

LGCAT_' 26440ROIr*GtDS.AT_CSOEN.O&_t
&L264_O_qOI/OISKIqO004
LOCaTe* 2e4d_JNaS.STarlON.O&rA

A_2_4_3EOOI/OISKI?O004
LOCATe' 26_dO_RIT.GTDS.O_4_OUR.CATA

_L264_O[OOI/91$KIgO004
LdCarE' 2e4_ORRIt._TOS.Ti_CCF.OArA
&LZb4ROEOOI/OISKO00004

LOCATe. 2648GJMA_._ONNES.OATA
AL_$4RO_OOI/OI$_q_OOOa

LOCatE' 26a_AtTIr. G_S_SG.O4ra
aL264SO_OOI/_ISKS2,100_
_OC_T_. _aRGJNAS._ASN_G.CATA

_L264_OEOOI/OISK020004

A_SOI JOB _648 CZBN_AAA) IN SETUP ON _AIN=G|

AqOS02 STEPI. IB _SNA_AA; USING 0 • OISKI? _N l§_
A_IOS02 FTOIFO01 .'SNAHAAA USING 0 • OISK05 GN 455
A'_OS02 FTI0_r001 :_rlAHAAA USING O • _')ISK09 _N 4SO
A_OS02 FTI4rC)I ZBNA_AAA USIN(,J O _ OISKtl2 _N 45E

&_I_SO2 FTISF_OI :BNA_AAA USING O • _ISKIO ON 335
A_OS02 FTI7_:30I ZSNAHAAA USING 0 • _.)ISK02 CN 452

A_$02 GI.=SS_4SG ZBNAM:_A USING 0 • OISK$:_ Oh 333
_ _,_dA_ :,.',,_ I_F4031 ZBNAMAAA STARTED T [_F._ 17.3S.34

m_:_;.,',_,'.,'A e02 [_CASP_ 7'_F iS Zfir*A_A,%_, GO ASPIO00[
:_:A_AAA 1£C202E K ?SF,OI2_4_.NL, :BNA_A_A *GG

Z 3NASA ..1-% I_.F4_04 i _SHAr4_,._ ENOEO TI_E= I?* 2e.23
I/ZBNAHAAA JO_ (GJOO2I'IIIT*T*GOO4OS_OOIOOII*9'|*FFF*_'ISGLEVf_L=I

/I _X_C C,MAS,REGICN.GO:J7_<
XXGMAS ¢)ROC

XXGO [X_[C _*M_GMA_e_GIC_4_OK
XXS rrpl i_1 _o 0 SN m_3JM& '|* GC|. L 0 _q'), 01 $_e_;H_. L)C _st_UFN(J. I

KA 00 O_NmG JNA _* _*0 * LUA 0 . i11 _m_ffN e _ _eflUFN_ e I
_XffTOlff_OI _U _)l_N_eCC[_mffUffNOIl. _ffAUL[LJAIA _iLL
XX 0SNaGJN45.UT ILI T'f .OArA

XXI_T02_OOI O0 DISP*(NES,O_LETEI, UPO&T_O A_TO SEQU[_E StA_E_E_*T$
Xx _C8 l("l_CFN_ff_JS * L_II[C L a64 _SLK _i ZE _34_b* tIUF'I_3a I I *

X_I SP_C_'sl TRK, I 2 ,I)| * OSNmGEXECF ILa= _Uh i t_O|_K
XXFT03F001 DO OISP:INE_,DELETF). SCRATCre/VCRKING FIL_
XX OSNaF*IIORK *UN[TmOI SK*SPACEsi rRK * (2 , I) | •

XX _CSm(_F.CFbI_II_RS *LR_CL m64 * _LKS(_E m J 4_J*he BUf¢_ 11 |)
XXffTO4F(30I 30 OI_-_$HM. AUTO_ArIC SF.QUIENC_. FILl
XX 05NIGJNA S * AU TCSE[Q. Oat A. _C_meUFNUa i

XXPTO$ffO01 _000N&_IOATAS 3A_& CARO |NPUI"
xXIrT_F_OI _)0 SYSOUT_&_ P_|NTER OUlr_Ur

FFF JJ

00000100

O00q02O()
)O00O 13)

i)000OSu O

)000_)O
00000_o0
000_0_00

o0ocog00
oO0010OO

OO001JlO

000_1_00

00001500
OOO0|600

Figure 2-4. Messages From the Com_uter (i of 3)

?-I")

XX OCI_(_l[CP MIV0 J.UItCLI | 3•,IN.KS ! Zl[a IqZ2 ._el)

XXOOePTOIPO01 00 OlIPmINIV.QILItlI. +¢NAtCM WOrn TINGlYiNG 01Sl_A+l
IIIX 0C11_41NlICImkkm4Ullliet_N_Lm _l*llt.Jll[I ll_ $4114) •ll_IIhO* I I *

mX Cm_£&O I S_. AY *UN I two ISK• SP_C8 m! ¢_L. * 42.21 I

Xl_T0gll00| 00 STSQWTmA* 4ESS N|NYlLN QUYlI_JV
U 0CIle(Wl[CPkVl&.t.JtlCLlll _*Si.KS |ZEs 14Z2 *SLJ_lml_[]•l i |
UPT|OP00I 00 0IShSl•_• 0Vli_NICS Im|L_l[

XX OSl•IGJMAS.OVNAMICS*OATA*OCISuIUpNQs|
XIIwTI tP_IKI| 00 _. (_,m(.OCLl[Tl[). U_3ATEO QYmAmtCS PtU[(OPT|QNJU_)

U O_OV N• UN| Tw23 | 4 • _IPAC;Im (•ILK. 3) e 0¢SmO&JB I_ml
RXPTIIIW04II OO O4Jm*v. YA_t OnlIY Pla.l[WlTk_UT B*ilTID4.1

XA UN| Y u_)Yll ACK • 0¢8u4 Nl[C11 liars e_NI[CL • | 0ql4 • _ S | _lrl | l 00 •
)131 8_NOml) ,i.AllEI.m¢ • O_P) .OI31klSl_ll

XX_T13PO01 O0 0_Y• TA_ Oral*IT _[I.I I[YH PJ_TIJU_$

]L_ UN| Tmq)TNACX e Gems(NI[C_MuVS •LNI[CL 14_64981.KS | _rl[mG60_,
U 8U110 t), l._ll|q.s | ,l[l_ !, 0 IS_Sl_

CIPTi 41801 1 00 • ISI_*S_II, SQl._Jl_l.umall/l_kl[y_llv l[m41ml[It IS 11 ILl|
X_E OS/4nQNi| 1" ._f0J.qm P |gSO.0AY_, 0¢JmQU_ I_0m |

XJIPTlSI_OOI OO 0|S_kmS0m• J&CCJ•|A NGIIILIIVS &TNOSI_IN[NIC 11|1.|
U 0 SNsQ_| T * GT0Se JA¢CM| A.O &TA* 0¢8m_111400 I

xXWTI61_OI 00 0U****Y Innon _I_SIAGI[OATA Sl[_ POll S_I
XXPTI 7_gO | 00 0 |SDISHN * _NmGJNk_S o1[_ MSG .O_TA • 0¢Sw0UIl_4_m I

xxPTlila001 00 Ol_•Nl[V.Ol[Ll[Tl[), |UAi_i_N| _UTQ S_Q I_|L_

)IX O_Mm_C_JIIIN •_JNl_mO| $1& e_ll&C.l[*_ TltK• I _,e | I) ,
)IX OCII II (III[CF till _il S • IJII_¢Lu44, _Jt.K S I zlrm3 654 * _ Q I I
XXJ_TIIINII@Oi OO OISIDuSlqll• _/4JS SYSTI[Pt Iql[llS F|L,I[

XX OSkmGJNaS ._11W S cO• Y A. 0¢_km0UPNOa I

RXllY20il001| 00 0|SP_S_IN, 8AIIITI* I;PQTI[NT|A_, 181111.O

XXPT_ti_0OI 00 OISPeS_W, I.UNAN _9TE_*Y[_ PIll.0

XX 03NUOlIQ I •. GTOS. £.UNAMII_.0.0&F • * O¢_ _:._ NQ_ I
XXPT2_P00t O* 01SPs_* •rmQSJ_lENIC 02NSITY *PILl|

XX 0 I_QNlll r .GTOS. Ar mQl0l[_. 0 Ar •, 0¢kt_JPMOo t

• XlrY23P0Ql 00 OIJmmY. ¢OmP•wl[Sl[Q Oll_ll PtLl[2. WIG D•IIT
Ut41 T_Tn A_K • 0¢lm _ IiI[CI_M_v S eL.IlllCJ_ m t G_14b. _ $1 I'I[e I _ GO •

XX IJ41J_NOwI) * l.A•ll[I..m4 *li./l* | *0l $11_SHI
zXl_T24f_O01 00 0UNm¥t COW,NIl $lO Gill|iT 1111.l[2. IITM _All

X31 UNI[YmqlylllA CK • OrJIII (lit l[CllllmV S. I.Illl[¢L.a64664 e III,.K _J I ZS[8tt461,
U OUIINOII|) • I.AOILe(. OI.P) * 01 ÀPlmSMll

XX |SK. 0¢8_¢ PU[¢I _ • • ! *

XX SI_ACEm¢CYI.. • !

XZl_Y_lbPO0| 00 UNIYmOISK, 0IK _311OlV fill.l[IITH #UtTJal.S
)IX 0ClB_(NI_CF nil _ • 81L.Ir_ | 711116640,0S0NGmO A• _J PNOm |) •
XX S_A _u¢ |y_.. 12)

XXI_T_Y_Q_t 0O O_J_NT• ¢Om@_mE 0• Qng[T Ptt.E 2• ulG _•_TIA
XX U_l| T410 | Sll e 0_ lJm(Jlt[CJlJ4m_ ,lll.l&$ | Zl[ll | 0qi_ *O SI_IGdlO& o 14_11N_ l | *

XX SI_ACEm4 CYl. *2)

x_Y2111_OOt 00 0Ulm4V. ¢0_1[0& QNII|• Pll.l[2. wiT84 1o1417
XA _N|Yu_)|_lK * OCSm| NIle• M_ *1_1_3 | ZH_•b660 eOSGNC_OA • li_JP _O_ I) •

• X S/l•Cl[e(CYL. |_|
X_Y2Si_QO| 00 O|S/ImSHN* SI_0W• SFAT|ON i_lLl[

X ! 0SmGJMA S * STA I* | OP•* 0 _r A, 0Cq_llSu_N_ I
XX11T30i_O_| 00 • |S_tSNW• I[6-_*4_0UN _LO I_|Ll[

XX 0S_m0m0| • .G•0So014kGUN .0• •A, 0Cl[_llU11 _O_ I
_lllY3114g00i 00 0|SlluSl411. Trail ¢QlqVI[IISION ¢Ol[PrptC|l[Nl*S 111tj'

X][OSNI(_N_ | T *GTQ$* i' t 14C_i_ *O&• A*QC_OUI_O t
XXl_YlqHa00| 00 O|$11uSI4N, SYOlll[O 411SS OIS_+•Y'I m_W_!_**JL._

Am OII•m_J_A _ *N_kAIS*OAf A
XIGISSIIIQ 00 0 tSh_i. Gill -**l[Sl•G_$

x_ DI_-*TTI T. GI[SSml_.0Mt & *GCSmt_UP_ I
AX 00 O 11111_1141Q cOS/muG JmA S * GIe•_JNIG*01 IPa * 0¢ 01_NGm I 4 a• S-,.mll I IA GI[S

AAsIrsSNI|HV 00 S_r_uYllAvOCJlm(N_¢Pl_mVl_AeiJll[C_m|]7 ellli_llll Iril_llllll411wlliiJIlllll_mt)
.'/GOe0•FAI[00 U/el ru(¢YC • .i)lPl[W) * 0l pulOl_3 cOl|Lit| | *

II OSN_ •l[P | 00O | * V_l*llSl[l_m 0 | 2t14 J •OCJo| NkS*P qaql J* _NI[CL.I000 el|L.K3| _ h_000 •

IS tJlW_l,,)Om I I
/S

1EF2361 •_0_. 11QR Zlil,ii.uilA GO
1l[112311 •so

II[112371 .50
II[Irl3• I iS*

I_11 23? 1 143

11il23• 1 143
|1111237| 4Sll

!111237'1 751_
1l[11 237 1]'GO

11!F_37 | 243
11!11231'1 tel

IEF237 1 4Sq
lip 23•| 245

till3? I 4_11

iill3Y I 33S

• U.0CAfl[o YQ SilPI. II

• _._.Q¢A rl[O TO
AtJ._CATEO TO P•01110Ol

_Ll.OCATl[O TO IrTO_ll_QOt
• I.J.QCAT_0 •O 11T03P00|

• t..I.0CATI[0 TO 181'04180OI

• LJ_OCATEO TO P•O5_001
AI.J.0C&•I[O TO PT0611OOIL
AI_LOCATIO TQ _T0_FOO|

At._.OCATI[D •O IET_OOI

• _I.Q|ATEO TO PYlOiw0OI
At.J.QCA•I[O YQ PYt 118001

AI.I.0CAYI[O I'Q 11TI41P0Ot
• I.L.0CATED l'O PTI;14e0O|

0o0o I ?O0

00OOle00
00441904

00O0l[000
OOOO_llOO

000O_Z00
0Q00Z300

00Q0_42Q
QQQQ_SQQ

30002FQQ

00 0O_lll0 0
000O2_lGO

0Q_03000
00003200

00OO_00
_00@3300

0000360 •
0O0O3SO0

QQ QQ3_Q •
0000..1700

00 O0 31100
00003'100

OOOQ•QOQ

0O00•100
00004200

000Q_IQO
00004400

0O004_O0
0000•640

00004•00
0000414100

000044100
00OQ_000

QQQG'SlOG
0O00SI00

0000_300
00 00S_0 •

0O00SS00
0000S6O0

0O00 _700
0000"Jl[00

00O OS•I00.
00006000

00006100

QQOOI_Q
00001300
00006400

000OGSO0

0OQQtkltO O
00006_00

QQO04_00
00006900

0000P000
00OO?100

0000TiO0

QQQO73QQ

00 O 0 +/'+J00

000OTGO0
_QOO)' Y+O •

00OO •II00
<30007'100

• lll_llll

• 1111_ N

Figure 2-4. Messages From the Computer (2 of 3)

2-13

III" 23? I
111"2371
111"13/'1
111"1311
IEPZ3"/'|
[EPZ31P|
IEP 231' !
! tl = Z31' f
illP237|
lip Z37 !
IEPZ3;' !
/tP_LI?|
ilEPa31 !
IEPl_r/'I
|ICl30 1
IEPI4_|
I£PlIII
IIPIIII
IEPIlll
I tll aIll !
lip•lilt
lip lllll
Ill'zest
IlPlllll
illllSi
Ill III I
i!# III I
lllllll
[llllll
lll_IlSl
I£Pllll
18P2111
lllP 20111.
i I_ Ill I
IllllSl
! II lie I
illliSl
I El lie i
ilP'III!
IlPllSl
IllllSl
lllllll
lip Ill !
Illll+l
lip lie !
ILr_ III I
lllw illil
ll'PllS I
illlIS !
IllllSl
lllllSl
iEIIOSi
IEPIOSl
lllllS I
II#IISl
ItIIOSi
lilliIJI
Ill lie I
Ill ll_ I
Ill III I
Ill lil I

II_' lIE !
ill III I

• IlPlil !
lip lie I
ill 180 I
I II Ill I
I II Ill I
lllllll I
Ill

4SZ IL_OCAr|D ro lilPl_O0l
24] &L.L.QCAT|O iO PT|OPO0!
4tg AN_O_iTID TO _T|VQOI
33S _.I.OCATEO TO PTZOIfO01
]3S AL,J.OCATED TO PTIIPQOl
]]g AIJ.OCAI_I0 1'0 PTZZPOO|
• 13 M_QCATED TO FTaT6P001
4ge A_OCATGO YO PTaTSPO0|
]IS AL.I.OCArEO TO /TEQPQOI
iSlE AI_QC&TqD 1'0 T_IPO01
lit AI.i.0¢ATI0 TO l/4_DtlOOI
333 AIJ.0CATE0 TO GISSNS0
462 AIJ- OCt, TED TO
?eE AU.OCA_O TO Sl_llilll
PTSOPOQ I 00 STATEI*EkT ll| OS|NG
- STEP ILLS EXECUTEO - COliC CQOE OOQO

GJNAS*_eO*L.OAO KIPY

VQL SIR _QS* O|SNI?.
GJMA0 .GO.L0&O KIUlY
VG / •iN _CiSl O|Sll?.
GJNAS*U 1T|L. | fT eO&TA K_l •
v_. SIW NOll C/S_0S,
STS0|0O8. I"1 ?l laTS.NVQQI, ZINAAe_A ,IXlCP |l. II 0re.•TED
YCL SEW _0_ SCll00t,
EYE0| 0Ol. il ?l 12S, Nv001 * ZlN_q_A , IQllK 011.EYE0
V_. SEN NQSa S¢ll00i,
• JMAS*AU_QO_ O*O&T • IlL•JI T

SIN NO_ O|SK|Y+
STS0i0O0* Ti ?l laTS,RV00 W* Zlkl_A_ *APl0O0| Olll.I•tO
VOi. S(N _O_ OlaTe40*
iTS111000. I171 iaTS*I¥Ii, ll_ *AVQ&401 Ol_lf ll_
iO / SEN N_II lEVI00.
STEel 00lie II PI laTS*lV0OI * ZBNAiqAAA e01S_t.JT 0It IT_
VOI. SEN NOS_ S¢llOOl.
STSII00e*Ti 71 laTSe_V0OI, ZlNA_A_ *AI_QA001 0m.•TIO

SFN _OSs "SlIiih
G_NI•.DYNAIICS.OA II IIUDT
Vf_. JIM _i_Slilm O|SKOqle

STSOI000* _1 ?1 laTS.NVO0 I * ZliI_AMA . 01ql Oral ETIO
VOl. Sill NO|If SCllO01*
0_+ | r*GT0S*SL+i U_-0*04 TI lENT
VQ_ S_ll NO_ 0|SKOQ,
OIIOlT.GTOS,JACCNIA.O&T& * KIlT
V(]L SEN _31a 0ISKIS*
GJqAI*_llNN_* OAT A KIP •
vO_ $_N I,l_Sll 0|$K0•.
SYS_I 00lie TI 71 I aTE.IV00 1. ZIN_A_ . CU_I 01J.ITED
VOL. SEN N6Sl $Cll001,
GJ_bI,N_ $,0 i T& KENT
VOl. SIN kKlim rslSKOq,
ON_ | T* GTO0iiANT_t.0,OM TA KE_T
V_ SEN NQ_ 01SKI_*
ON_ | • * O TOS*_Ni_IP_O,OA II KEN•
VQ_ SEN NOS_ 01SKIS,
Q_ l •.G_OS, A • m0SO£H,0A •I •liD•
VOI. Ell'l| N_Sl 0|IK|9*

qYS•lO0•eTlPl laTS*IIVOOI* ZII+AAA *411000033.I 01[t.E?lO
VQI. SIN NOS_ SCllOOl*
GJN&0.$ IA TION.OM I+M Kip1•
vl_l.. SIN NO0i 01$XI?.
0NO I T. GT0S,O aTN_QU_.0A T i ILII_T
,',l qllIR i,,*,flqi I'lilqlill¢l

one I T ,GTOS. • I m¢O_ ,01•A _IID•
VQI. SIR J_3Sa OISIL00.
GJMAS,NOI_E$eGA•A _IPT
v_L Sill _OS_ 0lSm0q)o
l•• IT .GI SSNSG.Oi TA KIIDT
VQI. Sill _NOSn QIOIClaT.
GJ_IAE.GN_SmSG .OATA KIP•
V_. Sill _QSa ¢lS_0aT*

ome C_kNl_l TiN!
coo I/O Tic|l• IN SIC.
llill I/Q C0%lNiS
eli i• 0 loll
Ill /ilIAAAsGO _l_lN_l
ice

role CHA_G_ T I_E
lee ISQ llll_ IN SIC*
_+e l#O ¢Q_H•S
lie III Z INAPIAAA

_e

le_ NAEA_GI_C _liO_qll 01 STO_tmm*_¥_--It*_
AMOS041 J08 2140 (_IINA_&AA I IN I_IIAIU_N

00Nimll_IrIl_ Ill --I 0 •XCPS

00*_mI[-•IPEPI. III --aT 0 IX¢eS

001Ml'IrtOll_001 I $ l[x¢_+

00_ml,_r oa_001 4 •XCPS

OOIIANI_T 03_ 0 O | S ExCP S

OOlNAIMIm_T 04_ 001 0 •XCIDS

O04_AM_'m_T 0SO00 I • _X_l_

OOl_ll_l_ ml_T 040 OO l • • XCPS

Q0illEml_• 0V 001 + •JLCPS

OOhAMle_rr Q_P 00 | 20 EXC_S

00NA_m_rr tol_00l El [xCms

00FILmlmi_T I |P001 • I[XCP5

OONAIH_mtl• ILM_001 .1 •XCP$

00M_ inlet l_l_00| 0 EXCPS

OOliillloPT 17P00I 0 (XCPS

OOI_IU_IwPT t _ QO l I [XC_S

00NALI_I_mI_T | _ OO I 2 EXC_$

00k_m[_•i01_00 | • IxCNs

OONANII_I_T • II_ 001 0 [xC_S

OC_I&mEa_T 21_l O0 i 0 ExCPS

O0_lM[+T •ldl OO I o EXCPS

00NAJt_m_ _q_l 0Q _ 0 iZCPS

00NAII_m_T]0P0Q l 0 • xC/DS

0O_*ANlmlrr34W0O l • Ixc_2

00NANI[eNrIT 4ql_ Q 01 4 1xC_$

00_+A_mGISINI• --I 4 IxCPl

00NAJ_mG_SNSG--aT Q •XCPS

,.......o.oo ,.,o.oo
I0• JLL-IXC II_I I I I)aT_ 14 I$¢-01P_ I C•Ss flee e00 CAIIIO_I_O000Q
2TINTIISIIK Sl _•mO3?4_ mlAIl-,J$110iO34LL_L i liCE Ir-_lSI©_ll0i I

ASlllmll II eoO. 441

STANTm C| --O1).-01/17.3 * 33 $•Qlle0l-0l--II I / l #. 34.23

¢_JI:OOIO.0P0 :'IN I/C_**IO*IIO *ll_l

0111qJlllllllllQ.li OlSlllllllliS o CLIII.LIIIIIO.00 •llll[llllllO.00 Glliillllll0i00 ilpllllll0iLLq I
TO •AL-.I XCPEa I lie laTE I I S¢-MVI ClimommmlO0

R0WmJ C|. ASImA HTTI01 $TA_Tm O I --00.-41 St ? * JS * 33 2TOkOl --O•* •l/I?. 30 * aT3

pN_I II(_L•ll /fill•lANCE, CAN.t. _d_ Ok]4q*.-iFH

Figure 2-4. Messages From the Computer (3 of 3)

2-14

USER CARD INPUT FOR THIS RUN

&GMASEX SEQNAM-'-eCARD5 1 • [8ATCH=I t_END
r'RIVEI
_R'FCCN
CRR [NP

&OR8.[N
[ELEM=_ 1 t
I C0RD=2 I
ELE!'q;n_0 0729., 70¢)58.4 •

7000o • 20 0,,•300 o •
0,, ,3-3.8.0•

• CCWE1.L • •
H "_ 100e •
I STOP" I •
STPVALu'e64,00o,

&ENO
CRBIT
EOF

Figure 2-5. First Page of GMAS Output

2-15

i
i

OOCLO000

oo00000OOGQO00

i 0000000

OOOO000
0000000
0000000

;
_ 06QO0 06

0 e • QO4QQ •

QOII, •

_ • • O0

OQO •
O _ OQ

_O_W O_ *Q_, m,

! ---0__.._.
tD lIJ _glm60

" __ Q _aUl ,i,e
• _t,e

* :!iii i"! -

t- V)tJ @,,,
t/w tU(4q 4)/)

t_]lO_e e

q tlJ), n'tJ

0

0

(1/

@

,g
!

t'N

2-16

0

o
o
o
o
o
o
0

o
0
0
o

*o •
o
o
• 000

-o * • e

g
,10

g

,o

o_

o

ONO

,_00

K

C3_U _' :_ 0 0 0

.....

4"00

_1" :IJ

0

@

r_

.,-t

0

<

5

o

I
¢Xl

0

.,-t

2-17

InPmll DEFINITION OF ABBRE_IATIONS m_e_mw
ANO m ASCENDING NODE DOT IN DEG/DAY

AP a ARGUMENT OF PERII:OCUS |H DEG
APO =_ ARGUMENT Of PERIFOCAL DOT IN DEG/DAY

APH s OSCULATING APOFOCAL GEODETIC HEIGHT IN KN
APR a APOFOCA4. RADIUS IN KM
AZ = VELOCITY AZIMUTH IN DEG
C3 =m ENERGY IN KM_2/SEC*e2
DCE _" DECLINATION Of VEHICLE WITH RES_CT TC EARTH

IN OEG

OCN I DECL[NAT|ON OF V_H|CL[WITH R_SPECT
TO MOON IN DEG

DCS z DECLINATION OF VEHICLE WITH RESPECT TO SUN IN DEG
DEC as OECL|NATION IN DEG

OXe0YeDZ _ VELOCITY IN KM/SEC
EA :m ECCENTRIC ANOMALY IK DEG
ECC s ECCENTRICITY
ENS u EARTH'-MOON--SUN ANGLE IN DEG

[ST z EARTH SUBTENDED ANGL 1= FROM V(_HIQ._ IN DEG
EVM s EARTH-VEH|CLE-NOCN ANGLE IN DEG
EVS :R EARTH--VEHICLE-SUN AhGLE IN DEG
HGT = GEODETIC HEIGHT IN KN
INC m IhCLINAT|ON IN DEG

LAT _ LATITUDE IN DEG

LQN • LONGITUDE IN DEG
MA = MEAN ANONALY IN DEG
M.,W = MEAN NDT[CN IN OEG/_IN
MST = N00N SUBTENDED ANGLE FROM VEHICJ.E IN OEG

p s PERIOD lh MIN
PH a OSCULATING PERIFOCAL GEODETIC HEIGHT IN KM
PR a PERIFOCAL RADIUS IN KM

R =t MAGNITUDE OF POSITICN VECTOR IN KN
RA : RIGHT ASCENSION IN DEG
RAE : RIGHT ASCENSION 0F VEHICLE WITH RESPECT TO EARTH

Ih OEG
HA_I m RIGHt ASCI=NSION OF VEHICLE WITH RESPECT TO P4OUN IN

DEG
RAN m RIGHT A_ENSIGN OF ASCENDING NDO_ IN DEG

RAS s RIGHT ASCENSION OF VEHICLE WITH RESPECT TO SUN IN
DEG

RE s MAGNITUDE OF POSITICN VECTOR OF VEHICLE

WITH RESPECT TO EARTH IN KM
RM a_ MAGNITUDE OF POgITICN VECTOR OF VEHICLE wITH RESPECT

TO IOON IN KM
RS : MAGNITUDE OF PQSITICN vECTOR OF VEHICLE WITH RESPECT

SAE : SPIN AXIS--EARTH ANGLE IN 0EG
_At4 : SPIN AXIS--NOON ANG4.E IN 0EG

5AS m SPIN AXIS--SUN ANGLE IN DEG
SLR e SEMI-LATU5 RECTUN IN KN
SMA 1 SEMI-MAJOR AXIS IN Kt
5S ! :m SUN SUBTEN_O ANGLE FROM VEHICLE IN DEG
5VN a SUN--VEH|CLE--QRt_IT NORMAL ANGLE IN DEG

(SUN ANC_LE)

I'A m tRUE ANOMALY IN OEG
TSP =s TIMe SINCE PERIGEE IN MIN
V • MAGN| TWE OF VI_LOCITY VECTOR |N KM/SEC
VAP = VELOCITY AT APOFOCUS IN KM/$EC
VP : VELOCITY AT PERIFQCUS IN KN/SEC
VPA s VERTICAL FLIGHT PATh ANGLE IN _EG

X*YtZ = POSITION IN KM
lira TItlE IS IN UTC TIME t*l

I) DENOTE IPARNS REFERENCE NUMBERS

(33)
I S)
(32)
I22)

(27)
(16)
(28)

(55)

(52)
(49)
(|A)

(I0,II ,12I
(19)

2)
I0.2)
(43]
(41)

(4.0)
(29)
(__)
(23)
(24 J

(20)
(31)
(45)

(30|
(21)
(26)
([7)
It3I

(54)

(51)

(4)

(as)

(53)

(50!

,e?,
(37)
(3_))

(38)
(25I
(1)

(_4)

13b)
(18)

(3_1
(35)
(15)

(7, 8, 9)

I_i,-[ure 2-8. List of (" _"

Z-18

0

,1j

CJ

I
("I

2-19

SIZE=0376K inaicates that the size of the region aliocaced

Dy the computer to run this job was 376K bytes of core. This

was input via the // EXEC GMAS,REGION.GO=376K card (see

Section 2.2.1) 1 MAX-USED=344K indicates the actual re

gion slze used to run the job. If a difference of more than

b0K bytes exists between these numbers, the computer will

refuse to continue processing the job.

Figure Z-5 sL_ows the first page of GMAS output. This page

llsts the usec input for the run.

Figure 2-6 snows the next page ot GMAS output, which is the

G_LAS news page. This page contains material chat is in-

%enaea Co be informative to the user.

Figure 2-7 snows the merge_ automatic sequence. The vari-

ables inaencea unaer &ORBIN are the default orbit input

variables, followed by the user's Input. Printed below tne

mergea automatic sequence is some in[ormation from tile ort_[t

input processor. The information on this page can be of use

to the experienced GMAS user, although it ma'/ seem conf,:sina

t_) the nov£ce.

Figure 2-8 li_ts the abbreviations [or in,_ st,n(larcl GMA'._

Figure 2-9 snows the GMAS parameter report. Although all

otner printout pages are informative, tne primary purpose of

the run is tnls parameter report. The parameter information

('J_'ll,'[,|t,¢(I I ,)! ,',_;'11 :;t'.,_[:) i:] :_f:[),lr.ltL,',l ,,'1 .1;.t ,'! I ;.J::.. '['J',.

[Lrsc s_c_Lon sp_ci£1es ti_e values o_ various p,]ramet.:rs J t

_uoch. (Figure 2-8 lists the parameter aobrevLations an,i

u_,£cs.) L'ne s_concl and final seccLOn sp,_c[L[;s th,: v JL_.:s

o£ tnese paramecers I day after epoch. Eash section ccn-

rains tL1e tlme from epoch and the local t.me.

iCore is allocated in even-numoerea increments. Thus,

REGION.GO=375K res :its in an _-!ioc]tion of 376K bytes.

2-'0

The parameter report is followed ny a numoer of Graphic Ex-

ecu=Ive Support System (GESS) output displays, which are

discussed in Section 4 of the User's Guide. These output

aisplays are primarily used for error detection.

2-2i

SECTION 3 - USING GMAS TO PROPAGATE A SATELLITE ORBIT

Section 2 of this primer shows how GMAS can De used to prop-

agate a specific satellite orDit for 1 day (Proolem 17. In

propagating this oroit, the user specifies the values ot

certain variables (e.g., the sanelli_e's initial orbital pa-

rameters, epocn, length of propagation) through card input

wnile using tne internally defaulted values of other vari-

ables. Many more orDit propagation input options are avail-

aDle tnrougn GMAS than are ShOwn in the Proolem 1 example.

This section discusses the orbit propagation input options

availaole to the user, which can De classified into two

_S : _.,L I _.__ _opag ion _ 1 i.,_t, di _

Section 3.1, and (2) force model input, discussed in Sec-

ion 3.2.

3.1 PROPAGATION CONTROL INPUT

Propagation control input is accomplished oy m_ans of _ne

variaDle cards entered between the &ORBIN card and the &END

card in the input _ec_ (see Figure 2-1). This inpuu can De

c±assified into five categories: input state, propagator

opulons, stopping conditions, output options, and general

_lags. Taole C-i of the User's Guide lists and ''_e. ines all

o_ nne avallaole propagation conurol inpu_ variables in

uheir respective categories and specifies their default

v,_xues. Tl_e £ollowing sections discuss the use of :n_se

variables, which are presented by ca:ego_'v, i: is :o De

noted tna_ commas must immedianeiy _:_'_ _' ' le____._ varlac values.

3.1.i INPUT STATE

3.1.1.1 Var iaoie Description

Variables in the inpun state cate,::fy incl_de ELE'<, iELEJ.,

ICORD, ICENT, IACORD, SARA, and __S-J.

3-1

ELEM is an eight-element array. The first position contains
the packea year, month, and day (YYMMDD.) of epoch. The

second position contains the packed hour, minute, and second

(HHMMSS.S) of epoch. The positions allowed for each quan-

tity (day, year, and so forth) must be zero filled, if nec-

essary. For example, if the satellite epoch is 5:13 a.m. on
January 27, 1981, the first two positions in the ELEM array

are ELEM=810127.,051300.,. (It should be noted that all

numbers in the ELEM array must contain decimal points.; The
next six positions in the ELEM array contain the state of

the satellite at epoch. Since there are various ways o_ de-
scribing the state of the satellite, some clarifications

must be made using variables IELEM, ICORD, and ICENT.
'fable C-la of the User's Guiae specifies the values of these
varlables.

IELEM specifies the type of tne initial state elements. If
the six initial elements are Cartesian elements (x, y, z, _,

_, _), the user sets IELEM=I. Since 1 is the default value

for IELEM, the user need not include IELEM in his list of
variables to be entered between the &ORBIN card and the &END

card in the input deck. If the six initial elements a_e
Keplerian elements with mean anomaly (a, e, i, _, _, M), the
user sets IELEM=2. Table C-2 of the User's Guide should be

used to determine the ELEM array for a given IELEM value.

ICORD specifies the coordinate system to which the initial
state elements are referenced. Satellite elements are

usually given in the true Earth equator and equinox of date

coordinate system. If this is the case, the user sets

ICORD=2. Since 2 is the aefau!t value for ICORD, the user

need not include this variable in his list. If the initial

state elements are given in the mean 5arth equator ane equi-

nox of 1950.0 system, the user _ts ICORD=I.

ICENT identifies the center of tile input element coordinate

system. The Earth is usually tne center (origin) of the

coorainate system to which the elements are referenced. If

this is the case, the user sets ICENT=I (or omits ICENT from

his list, since 1 is =he default value for this variable.)

If the initial element coordinates are centered at Mars, the

user sets ICENT=4. It Should be noted cnac variable ICENT

re£ers on±y co tne center of the input coordinate system ant

not to the propagation central oooy. The latter is identi-

fiea by variable IBODY, which is set in the force model in-

put section (see Section 3.2).

IACORD, SARA, AND SDEC identify initial spacecraft attlt_Jde

conditions. 'fable C-la of the User's Gu_,Je _p_ci_i,__:_ t:Te

input values for these variables. If t_.e user is concerned

only wi=h the satellite orbit, these variables can be

ignorea.

3.1.1.2 Example of Variable Use

A brief example of the use of variables ELEM, IELEM, ICORD,

ano ICENT is presented in the following case, in which one

objective is to propagate a satellite orbit, given the fOi-

l --..:

Epoch: January 27, 1981; 05:20:00 GMT

Coordinate system Eartn-cencered mean ecliptic and

of input: equinox o= 1950.0

Elements : Kepler ian:

a = 8000 Kiiomecers

e = 0.i

i = i0 aegrees

_ = 20 degrees

= 30 degree:?

M = 0 degrees

To enter the necessary information correctly, the user mdst

use tne following variables and va!_e_:

ICORD=3, ICENT=I, IELEM= 2,

ELEM=810i27.,052000. ,

_ _[

8000.,.i,i0. ,

Z0.,30.,0.0,

The following points should be noted:

• IELEM, ICORD, and ICENT are integer variables and

do not have decimal points, whereas ELEM values do.

• The variables in the list following the &ORBIN card

are always followed by commas (even at the end of a

line) .

• No line can extend beyond column 64 of the card.

3.1.2 PROPAGATOR OPTIONS

3.1.2.1 Var ia_le Description

VarlaDles in the propagator optlons category include PROPM,

IPOPT, and H.

PROPM iaentifies the propagator to be used. The propagator

name must De in quotes (e.g., PROPM='AVGVOP'). If variable

PROPM is omittea £rom the user's input list, the Cowell

propagator is used Dy default.

IPOPT is used in con3unction with the analytic propagator or

for special element conversion. The use of this variable is

aiscussed in subsequent sections.

H specifies the step size (in seconds) of tne propagator to

be used. For the time-regularized Cowell propagator, H rep-

resents the number of steps per revolution.

3.1.2.2 Example of Variable Use

To propagate an orbit using the time-regularized Cowell

propagator with 200 steps per revolution, the user must use

_he following variables ana values:

PROPM= 'TRCOWL ' ,

H=200.,

J

.-4

3.1. 3 STOPPING CONDITIONS

3.1.3.1 Introduction

When the propagator acnieves a stopping condition, it prints

out the satellite information specified by variable NOUT

(see Section 3.1.4) . Problem I (Section 2.1} includes only

one stopping conaition (i.e., 1 day). Therefore, the

printea output from Problem 1 incluaes only _ne initial ou%-

put parameter report (which is always included) and __n_ out-

put parameter report after I say o£ propagatlon (see

Figure 2-9). By setting stopping condition variables prop-

erly, it is possible to retrieve satellite state information

at many selectea points during a propagation. 'Fable C-ic of

_ne User's Guide describes the" stopping condition variables.

Before proceeding in this discussion of stopping conditions,

the distinction between the terms "stop" and "terminal stop"

must be noted. A "stop" on a condition means that an output

parameter report is generated and the propagator continues

to the next stop. (An output parameter report (see Fig-

ure 2-9) is generated for each stop.) A "terminal s_op

means that orbit propagation terminates after the parameter

report ±_= generated.

3.1.3.2 Variable Description ana Examples of Use

Variables in the stopping conditions category include ISTOP,

_TPVAL, ISKIP, IREPT, MULTI, and ITERbl.

I_TOP anc STPVAL are iS-elemen_ arrays that descrioe .p _o

18 s_opping conalticns. Table C-3 of tne User's Guise spec-

ifies the availaele values of _nese variables. ISTOP con-

talns tne stopping conditions, ana STPVAL contains the

cor_esponu_ng values unaec whic." these conditions at_ _ met.

For exampie, to stop wh,.-n _e distance o£ the sar.el![t_ from

_e *a'rtn ls 500 kilomene:" ; and increasing, the user se-s

[_:['_'2= , 5TPVAu=500. , .

3-5

A more complex example of the use of ISTOP and STPVAL is the

following case, in which the objective is to stop a satel-

lite at each of the following points:

• Two hours (7200 seconds) after epoch

• When the satellite's distance from Earth is

6000 kilometers and increasina

First ascending node

Point of farthest approach from the central body

When the osculating argument of perigee is i0 de-

grees

To accomplish this, the user must use the following

variables and values:

ISTOP=I,3,11,14,27,

STPVAL=7200.,6000.,0.,0.,10.,

The following points should be noted:

• STPVAL values must include decimal points.

• Values are separated by commas and end with a comma.

• Stopping condition ii does not need a value, so 0.

is used to fill the corresponding STPVAL position.

• The user does not need to fill in all the positions

of the 18-element ISTOP and STPVAL arrays. The po-

sitions not included as input are defaulted to 0.

It should also be noted that values in the ISTOP array can-

not have embedded zeros. For example ISTOP=I,2,0,3,4 causes

the system to ignore the underlined stoppinq conditions _n,i

has the same effect as ISTOP=I,2.

TSK[P, IREPT, and MULTI are i8-element a_ray_ thdt COr1_:ib -

ute to the establishment of the desired stopping confiaura-

tion. The best explanation of the use ?_ these vaciables [_

3-6

an example such as the following case, in which the varia-
bles and values used are

ISTOP=I,
STPVAL=86400.,
ISKIP=3,
I REPT=5,
MULTI=2,

If these variables and values are added to the user's list,
the results are as follows: GMASstops on time (ISTOP=I)

every day (STPVAL=86400.) ; the output parameter report is
skipped three times (ISKIP-3) and then printed five times

(IREPT=5), and this sequence (three skips, five prints) is
repeated two times (MULTI=2). Fiqure 3-1 illustrates this

configuration using a timeline to show the points at which
output is generated.

The following points should be noted:

• An initial output parameter report is always gener-
ated at epoch (0).

• Propagation terminates at 16 days when all condi-
tions have been met.

The toregolng example uses only one element of the ISTOP

array. Stopping configurations are more interesting when

they involve multiple stopping conditions, each with its own

set of ISKIP, IREPT, and MULTI values. To illustrate the

use of these variables in a multiple stopping condition en-

vironment, the following case is considered, in wilich the

variables and values used are

ISTOP-[, i, [,

STPVAL=I00.,175.,II00.,

ISKIP=2,1,0,

I REPT=3,!,3,

MULTI=4,3,0,

The relationship of these v_riables and va!ue_ is e_ier to

understand wizen they are presented in tahelar form_, as in

3-7

X X X

[I ; I l I

0 1 2 3 4 5

NOTE: X - PARAMETER OUTPUT

X X X X X X X X

q i _ I ! ! i !

6 7 8 9 10 11 12 13 14 15 16

DAYS PROM EPOCH

17

O

Figure 3-1. Stopping Configuration

/

3-8

l'am±= 3-±. In tnls table, one same variaDie values pre-

sented aoove are more readily seen as sets of stopping con-

altions, labelea A, B, ana C. In Figure 3-2, corresponaing

lapels A, _, and C illustrate the effect of these sets of

stopping conaitions in a timeline that snows when stopping

Occurs.

ITEItM is an five-element array that specifies the terminal

stop of propagation. If ITERM=N, the Nth stopping condition

is _esignated to De terminal. This means that when ISKIP,

IREPT, and MULTI have been satisfied for the Nth condition,

the propagation terminates regardless of the completion of

other conditions. If, for the preceding example, the user

sees ITEP/_i=I, propagation _erminates at 2000 seconds (the

last A in Figure 3-2). If the User sets ITERM=2, propaga-

tion termlnates at 1050 seconds (the last B in Figure 3-2).

Ir the user sets ITERM=3, propagation terminates at the same

tlme as in the original example (3300 seconds).

ITERM can contain up to flve values. If ITERM=I,3,5, prop-

agatlon _ermlnates on _ne first stopping condition in __nis

set %ha5 _s met. As an-example, the following case is ccn-

s iderea :

IS'FOP=I, I, L,].,I ,

']TlJV/_l,-bU(ll.I. , ,Ill(}()., 21)i]I)., ')1)!). , I L.li)LjII . ,

ITi:,i{M-l,],'_,

[l] tliL:] c,i:_.t. tZl_-.' [)_'O[3,_gdtO[:.]to[)S ,it 5_)_) se<:o_l,i:] .]rl,i,it

;000 seconds. Since 2000 seconds (the third stopping con-

cltion) i'.;o,_e of the designated terminal stopping concii-

tions, propagation terminates at this point. Th.-fefore, the

stop values of 4,000, 5,000, and i0,000 seconds do not occur.

3-9

(J

0

.,-t

0

C}

C_

u_

I

OJ

tBILO6L

0
q..

tCI
f_

8
,qp

uJ

_1 _j

00££

O0_C

OOt£:

O00F.

006_

008_

(]('}L(:

t 009C

OOSi_

t O01tg
OOG_

c) O0_Z

I OOt_

O00C

O06L

< O08L

OOLL

O09L

OOSL

OOPt

o0_ t

(.J oOt t
m

,_ 000 L

_c 006

,=c 008

OOL

009, OOCJ

='(I 00_

00£

00_

O0 t

×lo

[8/L60L

z
0

u_

U3

0

u_

z
t-

5
z

,=
.[

tU

u.l
en

.,.I

U.I

'2_

,:, <_ ×
P
c
z

©

_3

.,H

0

0
.,-I

.,-t

G
0

C,.)

c_
.,.._

0

c._

0

_,

I

It should be noted that the propagator continues to propa-

gate until one of the following three conditions is met:

i. All stopping conditions have been satisfied.

2. A terminal stopping condition has been satisfied.

3. One of the two ae£ault terminal conditicns (i.e.,

impact on the propagation central body, 3-year time

limit) has been met.

_he 3-year time limit and impact ccnstraints can be changed

by including variables TOFI and RADI under the &DYNSEC card

(see Table D-2 of the User's Guide). The procedure for

making these changes is discussed in Section 3.2 of this

documen t.

3.1.4 OUTPUT OPTIONS

Variables in the output options category include PA_._iM,

NOUT, and IPARMS. Table C-id of the User's Guide describes

these variables.

I'/_I_P1M :_t,,'(:il i,':; rll,' .'lll,ll,:tnum,,I j4: ll.,m,' ,_I t ll,, I .,I,_n.,.I r I,' .'.11

(:ulatiOl_ modtlle. For norma]. 0EbJ. t _L)['O[JdLJglt:JL()[l ()uL[Jut:, t.[l(;

user sets PARMM='GPARM' Since this is th_ d,.fiau]t va]uF.

[o_ PARMM, ti_ us_£ ,,_d not include _A_[:-IM in his inpuL

list. Other values of PAPMM are for special, unconventional

types of output, which are discussed in subsequent sections

relative to specific cases.

NOUT is a three-element array that aetermines the type of

output parameter report occurring at each stop. NOUT(2),

which specifies the output coordinate system reference, _e-

faults to the input coordinate system. NOUT(3), which _oec-

ifies the output central body reference, defaults to the

integrator central body (usually, Earth). In general, the

user can ignore the second a.-d third elements of NOUT, leav-

ing them to their default v-_;-_S.

,,-[}.

The first position in the NOUT array determines the type and

level of the output report to be generated• Table C-6a of

the User's Guide describes the various standard levels of

output available through GMAS. Figure 2-8 of this primer

contains a list of the parameter abbreviations used in the

output. Figures 3-3 through 3-6 show the various levels of

output reports generated for the propagation of a satellite

for 1 day. If NOUT=-I, the output is the same as the

level 1 output (NOUT=I), except that it also contains the

Brouwer mean elements. If the user does not include NOUT in

his input list, the output report generated will be level 2

(NOUT=2), since 2 is the default value for NOUT.

IPARMS, which is used only when NOUT=4, 5, or 6, allows the

user to list up to i0 parameters to be generated. If the

user is not satisfied with the printed ounput obtainable by

setting NOUT=I, NOUT=2, or NOUT=3, he can set NOUT=4 and

ctl_n_;e Ii I, I;(_](] p.iramet,,r:s to 1),) priz_t:0,,I. '1'I_,, pr',)_',.,t,_r.. I,_r

_his is _s Lollows:

•

•

5el NOUT=4.

Choose (from Table C-6c of the User's Guide) up to

I0 parameters to be printed at each stop.

Set IPARMS=NI,N2,N3, and so forth, where the

letters N represent the numbers corresponding to

the parameters selected from Table C-6c.

For example, if the user desires to have printed out (l) the

magnitude of the spacecraft position _;ector, (2) the magni-

tude of the spacecraft velocity vector, (3) the energy, and

(4) the orbital period, he sets NOUT=4, IPARMS=IY,18,28,30.

Figure 3-7 snows the resulting output for a 1-day propaga-

tion. Since the user does not include ,zalues for NOUT(2)

inci NOU'['(l), th._Lr defaulted val le_ r.,s ill.

The remai.,-ling two values of _IOLT (5 .]: _ ,z:,_, u..3ed i;_ spe-

cial cases when the user desire._ th._ ._orm,-_:-;on ae [_a._se,i

3-12

t..

4r

Q.

,f

-t

A

,'--t
II

Z

4-1

4.1

o

m
ili

I

-,4

I
II

o
Z

C
qJ

,,-I

Ci

oj
L_

0

c,
-i..,I

4,,a

..i,_t

r-,,t

,,-.4

>

I

(-,,-)

l.-,

,.,-,

3-13

N • •

_ • .-

,,,.tr._. _0 v, i.)e _',"}oo(v kl •

._:......... , ._..,_.._..o

4{ H II .o .

3lJ

,- +_o a") _ u. I- -, .1, o _ ,4., _)-I_0 (, _* ._,1+ .f'P,U¢.

.J 1 P, _J -i "JI IJ ! .j 1U _lj _-_p_ ti) p1 4)

I I • I I •

< o _

,d_ .o_l .+re '..a_ ._r. *".IV*

r'l . ~_. .).. •

•T*a'l 0 ,e .rul_

,I I,.. ") u"l 0 _ 0 I_- e ,ll.._ol,#_._e

o,J * ._l,j *..e <trj • ..,_ *,_e

,,<_......, ,, ,: ,_,<........ ,o.

A

II
E_

0
2:

_J

O

>
_J

I
P'1

.M

II

o
Z

_J

_.J

0

,-4

>

I
r,9

-,-I
r,.

3-14

! •

S :

!: :" |: :"
II

©
Z

0

4J

©

0

4_
_J
r-

,j

©

I

.r-I

3-!5

3.1.6.1

P ROB LEM :

lowing :

to other utilities for processing rather than just printed

out. The uses of these forms of output are not discusse4 in

detail in this primer. However, in example is shown in

Figure 4-5.

3. i. 5 GENERAL FLAGS

Variables in the general flags category include IDEL, IPRNT,

and IDYN.

[DEh iS a [[ag that is used in coml, l [cated autom,Jtic "_,,-

quences to save core by deleting the propagator and param-

eter modules. It is not needed for., sLmpLe orbit

propagation.

IPRNT is a debug printout flag for orbit propagation. It is

also unnecessary in a simple orbit propagation.

IDYN is a flag that is used in conjunction with force model

changes. If IDYN is not included in the user's input list,

GMAS uses the defaulted force model (4-by-4 Earth field, ef-

fects of Sun and Moon included). If the user desires to

change the force model, he must update the Dynamics File and

set IDYN=2 (see Section 3.2 for details).

3.i.6 ORBi'£ _L_IPAGATION INPUT EXAMPLES

This section presents primer Problems 2, 3, and 4, which

provide examples of various orbit propagation input.

Problem 2

Propagate the orbit of a satellite, given the fol-

Epoch:

Elements:

October i0, 1980; 00:00:00 GMT

Keplerian :

a = 8525.0 kilometers

e =0.24

i = 68 degrees

= 91 degrees

= 93 degrees

T = 248 degrees

_J

3-16

Coorainate system
of input :

Propagator :

Force moael:

Eartn-cencered true Earth equator and
equinox of aate

Time-regularized Cowell (step size =
i00 steps per revolution)

4-by-4 Earth field, no drag or solar
radiation pressure, effects of Moon
and Sun included

5top .Ju t:[rst perigee, _irsc apogee, and eve[7 20til perL._,_e

ana every 20in apogee until October 20, 19}J0, at [:3U n.m.

At eacn stop, print out the Cartesian elements (x, /, z, :_,

y, _), tne position magnitude, the osculating perifocal and

apo£ocal heigncs, an_ the period.

USER PROCEDURE: The procedure _or solving Problem 2 is as

Using Table C-I of the User's Guiae, de_ermine the

appropriate value of each variable.

For Chose variables whose default values will not

proviae the results required for this case, punch

ou_ cards with the necessary variables and values,

remembering the following:

a. Each variable name must start after column 1

'_ _.... _-_ '''" CO1)

the values must not extena beyond column 64.

b. Each value entered must be followed by a comma.

c. Real*8 (R*8) type variables (see the Type col-

umn in Table C-! of the User's G_ide) must

nave a decimal point; integer (I'4) type varl-

aDles have no cecimal point.

Starting with the :,;replete GMAS deck illus_rated in

Figure 2-1, replac= _ne cares between one &ORBIN

cara ana one &END 2ard witn those punched in

step _. Submit t:.._ _ec<.

3 -17

.J

AUTOMATICSEQUENCE: In Figure 2-i, the cards in the deck
between the DRIVEl card and the EOF card constitute the

automatic sequence. Generally, the cards before and after

the automatic sequence remain the same except for special
applications (discussed in subsequent sections). Therefore,

the solution to Problem 2 is given (as are the solutions to

other problems in this section) as an automatic sequence.
The automatic sequence for solving Problem 2 is as follows:

col. i
+
DRIVEl
PRFCON
ORBINP

&ORBIN
IELEM=3,
ELEM=801010.,0.,

8525.,.24,68.,
91.,93.,248.,

PROPM='TRCOWL',
H=I00.,
ISTOP=I,998,13,14,13,14,
STPVAL=801020.,13000.,0.,0.,0.,0.,
ISKIP=0,0,0,0,19,19,
IREPT=0,0,0,0,1,1,
MULTI=0,0,0,0,500,500,
ITERM-I,
IPARMS-7.8.9.10.11,12.17,21.22,30,
NOUT=4,

&END
ORBIT
EOF

The following points should be noted concerning this auto-

matic sequence:

• IELEM=3 because the input elements are Keplerian

with true anomaly.

• ICORD is not needed because its default value pro-

vides the coordinate system (true Earth equator and equinox
of date) required for this case.

• ELEM contains the epoch date and time and the six

given Keplerian elements.

J

3 -18

• ICENT zs non neeaed because its aefaul5 value pro-
viaes the coorainate system center (Earth) req_t.red for this
C d:dt:.

• iACORD, 8a_a, and 8DEC are not needea because they

pertaln %o at%i_ud_.

• PROPM='TRCOWL' oecause the time-reguiarlzed Cowell

propagator is oezng usea.

• IPOPT is not needed because the analytic propagator

is not being used.

• H=I00 indicates i00 steps per revolution.

• ISTOP, STPVAL, iSKIP, IREPT, and MULTI (the stop-

ping conditions) can be written in the form shown in

Taole 3-2. Since ITEP_M=I, use of the values in columns A

ana b of tne cable sets the terminal stopplng date. Use of

the val.aes in column C causes a s_op at first perigee. Use

of Cne values in column D causes a stop at first apogee.

U:-3e o[the values in column E causes a .-;Lop ,-_t periqe,_ to '_,

_SKtpped IU Limes and th_n accepted once, with the cC_tiC_:

process (ISKIP througn IREPT) being repeaced 500 times.

(The MULTI count has bsen set %rDitrari]y large to accemmc-

aace the propagation.)

• PA_hM is not needed because it defaults to 'GPARM'.

• IPARMS=7,8,9, iC, ii, 12,17,21,22,30, . These numbers,

_aKen from Taole C-oc of the User's Guide, correspond to the

various ou=put information desired.

• NOUT=4 indlcates that only _he parame_.ers _escribed

in the IPAR_MS array are to be printed at each stop.

• IBEL and IPRNT are not needed.

• IDYN is no_ needed Oecause its default v_: _e pro-

rides tne f.rce model required for this case.

3-i9

Table 3-2. Stopping Conditions for Problem 2

VARIABLE A B C O E

ISTOP

5TPVAL

ISKIP

IREPT

MU LTI

1

801020.

0,

0

0

998

130O0,

0

0

0

13

0,

0

O

0

14

0.

0

0

0

13

O.

19

I

500

F

"4

(}

19

1

i

_-20

OUTPUT: Figure 3-8 shows the printed output resulting from
the Problem 2 run.

3.z.b.2 Problem 3: Station Cover@ge

PROBLEM: Given the following, determine the station cover-

age o_ a satellite at the GSFC, Bermuda, Guam, and Hawali

composite antennas £or 1 day:

Epoch: July 29, 1975; 7:09:58.4 GMT

Elements: Cartesian:

x = 6526.439 kilometers

y = 0.0 kilometers
z = 0.0 kilometers

= 0.0 kilometers per second

= 3.24286 kilometers per second

= 8.026368 kilometers per second

Coordinate system Earth-centered true Earth equator and

of input: equinox of date

P_opagator: Cowell (step size - I00 seconds)

Force model: 4-by-4 Earth field, no drag or solar

radiation pressure, effects of Sun

and Moon included

USER PROCEDURE: The basic procedure for solving Problem 3

is the same as that speclfied for Problem 2 (Section 3.1.6.1).

AUTUMATIC SEQUENCE: The automatic sequence tot solving

ProD±em 3 is as follows:

col. I

D_IVEI

PRFCON

OR_INP

&ORBIN

ELEM=750729.,070958.4,

b526.439,0.,0.,

0.,3.24286,8.026368,

H=100.,

ISTOP=I,41,99_,42,998,41,998,42,998,41,998,

42,998,41,998,42,998,

3 -21

{i{ ,i{!{ii,{{{!i,i!{ii'{ ' {_{_{ia..:-!! {w{{ { ,
, ,;-11 _ {: _? {! {-{. ; '=:

:i'! _'I " ' 'lll=l'i-"l !v, {

I-,*4ie *04 veil• _.d-- .44

i -" -- ! -- -',.-.";'"' _",'"" _'". ""' '-i !"i ;'-" ,": ,--" "'

{ _,"_{= := : E !" ! - •

__1__ "=-' :! "".... l_:':"""¢,,¢W,0 ,, • lle_•: .-.--"..'m---""-_"'.E-;.{-"" _-'-,-,,.."'"5L:. _=:: _.-.
mollo _¢ii •

lO 4BO*• Ill Oll t Ill loll _qiqP ill
Ill•"- -. --- _i... _,:: _,::_.,,,_-:, _I-.,:i.'=:_-=: :l_{_... "'- --:_{.-.

IIIWI gO {l,_O _,e_• 0_•_,.,.. "J.,..l• gO

i ;1i_-:}-'.:';'- ,_ i:"""',.,_.-',-i""":1}_'"_":i":",-_ -,,,-,,,-.,,_:.:1_.-,_"i'-',{- l{l l: _ - :

-* : =S; " :II " ** --* *-- ,.- *-.

_t.'0 It•PO _ 41ITS ¢_1 qi_ tWP* I Pn_il I _b ,OWP ° I° • lll• g_•* _M_ O lilt I ,•41 _ _I--• _'l

"i""""i_'-_|"i ""{_ • l: . {= . = •

e.

E
_J

J=
0

$,
f_

_q

_q

_J

O.

©

oa

oJ

o;
I

¢._

oJ
$.

.,-I

3-22

STPVAL=86400.,'GSFC/ETC','COMP','GSFC/ETC','COMP',

'BERMUDA','COMP','BERMUDA','COMP','GUAM',

'COMP','GUAM','COMP','HAWAII','COMP','HAWAII',

'COMP',

IREPT=I,16*50,

ITERM=I,

&END

ORBIT

EOF

The following points should be noted concerning this auto-

matic sequence:

• IELEM, ICORD, and ICENT are not needed because

their default values provide the input elements, coordinate

system, and coordinate system center, respectively, required

for this case.

• ELEM contains the epoch date and _ime and six given

Cartesian elements.

• PROPM is not needed because its default value pro-

vides the propagator (Cowell) required for this case.

• H=I00 indicates a 100-second step size.

• The stopping conditions are input as 1 day (86,400

seconds) from epoch; signal acquisitions for the GSFC-

composite antenna, Bermuda-composite antenna, Guam-composite

antenna, and Hawaii-composite antenna are set; and signal

losses for the same station-antenna pairs are set. In

addition, the time stop is flagged as terminal, and the

other stops are repeated until the time constraint of i day

is met (i.e., IREPT is set to a value sufficiently larqe te

accommodate at least 1 day of station coverage>.

• Each station to be covered requires fo_:r positions

in the ISTOP array and four correspondiz': positions in the

STPVAL array. The format must ;_e _ foLLows:

ISTOP=41,998,42,998,

STPVAL='station name','an:_n:a--_::_

'station name','antenna-nam:

3-23

OUTPUT: Figure 3-9 shows the printed output resulting from
_ne Problem 3 run.

3.1.6.3 Proolem 4: Shadow Studies

PROBLEM: Given the same orbit propagation information spec-

ifiea in ProDlem 3, conduct a shaaow study for I day.

USER PKOCEDURE: The 0asic user procedure for solving _nis

problem is the same as that specified for Proolem 2

AUTOMATIC SEQUENCE: The automatic sequence for solving this

problem is as follows:

col. 1

DRIVEl

PRFCON

O_BINP

&ORBIN

ELEM=750729.,70958.4,

6526.439,0.,0.,

0.,3.24286,8.026368,

H=I00.,

ISTOP=I,50,

STPVAL=86400.,I.,

IREPT=I,1000,

ITERM=I,

&END

ORBIT

EOF

The variao±es in this automatic sequence are the same as in

tne Problem 3 automatic sequence except for the stopping

conaltions. 'f_e stopping conditions in this sequence in-

clude a terminal stop i day from epoch and a stop on all

Earth shadow conditions that is repeated i000 times. (The

repeat factor is arbitrarily set to cover the 1-day time

span.)

L

3 -24

Figure 3-9• Parameter Output Results From Problem 3
(Station Coverage) Run

3-25

OUTPUT: Figure 3-10 shows the printed eutput resultina from
the Problem 4 run.

3.2 FORCE MODEL INPUT

This section discusses the procedures for entering various

changes to the GMAS default force model. The GMAS default

force model includes a 4-by-4 Earth field and the effects of

Moon and Sun. Changes to this force model are accomplished

via input cards entered between the PRFCON card and the

ORBINP card in the GMAS card deck (see Figure 2-1). Sec-

tions 3.2.1 and 3.2.2 specify the methods for entering force

model changes for Earth-centered orbits and Moon-centered

_b_ts,o _ 4 respectively. Section 3 2.3 presents primer Prob-

lem 5, which provides an example of force model input.

3.2.1 FORCE MODEL CHANGES FOR EARTH-CENTERED ORHITS

Four dynamic forces affect the performance of spacecraft or-

biting the Earth:

Dynamic Force

Earth's geopotential effects

Noncentral body perturbations

Atmospheric drag

Solar radiation pressure

Default

4 by 4

Moon and Sun

OFF

To make changes in the default force model, the user must

update the Dynamics File and use the updated file for the

propagation. The procedure for this is as follows:

I. Set IDYN=2 under the &ORBIN card. (If this is not

done, the default force model will be used.)

_.I

3-26

_ uVJ_A ¢111 _at(_ P _I _!

l+ *t +o.|0o l-+ql tOT _IINI • |Pl.llal_ll3{l _IIII ICY +lkl • a?.il0_lllll

T_'+_ - _ _ l,._.l-_P'_rllPl_r r_ _Ir_Pl-l-Pll--_ r

I[

L_ 2; _|._ +I-_41 rot NI_IS . _l.01Sa410_ UlII- l_r qlPll - 17._IIJI0.0

+me rol +l_rl * l_.s*14+mll

L

_ml TCT ml_S • 2P._IS43t

+ll +OT mlmS • +7.IITIIIll

_I TQT qlNS • ,___

U_I T0T _I_I . 2T._6ea_iQ9

uml TOT ml_l I _7.16_911_

u.l ,u, -l_ - *v

_iII TOT _I_$ • +P*iI|+#JI

Fiqure]-I. 0. P,._rameter Output Pest1[ts i'_rom Pr':Slem 4

(Shadow Studies) [_un

3-27

_. Include the following cards in the automaclc se-

quence between _ne PRFCON card and the ORBINP card in cne

input deck (see Figure 2-I):

col. 1

DYNUPD

&DYNUP

(variables to De changed)
&END

& DYNSEC

(variables to be changed)
&END

Cards &DYNUP, &END, &DYNSEC, and &END must all be included

regardless of whether the user wishes to change variables

under them. Var iaoles to be changed are entered in the same

fashion as they are under the &ORBIN card.

3. Consult Table 3-3 of this document to determine

wnlcn variables are %o be included. Note the type of each

and the card under which each is to be entered (&DYNSEC or

&DYNUPj.

4. Enter &DYNUP variables under the aDYNUP card and

&DYNSEC variables under the &DYNSEC card, remembering that

R*8 type variables reauire decimal points but 1"4 type var-

iables do not.

Tables D-2 and D-3 in Appendix D of the User's Guide provide

descriptions and default values for all variables under

&DYNUP and &DYNSEC, respectively. Most of these variables

are fixed constants (e.g., ,_, GM) or are not usually

cnanged (e.g., harmonics coefficients). Table 3-3 of this

primer presents the most frequently used dynamics variables

[rom 'fables D-2 and D-3 of tne User's Guide. The variables

are presented in this table according to the four categories

specitlea ac tne be._nning of cnis section.

j

3-28

q;

.Q

-,..4

CJ

E

>,

(n

>,

4.)

O'

!

,-.4
m

ms

qP • qP _,

_m m m,

!

_P

m

tlll&ol_

a m _• • °

3-29

3.2.2 FORCE MODEL CHANGES FOR MOON-CENTERED ORBITS

Although GMAS is primarily used for the propagation of Earth-

centered orbits, it does have the capability to propagate

non-Earth-centered orbits. To propagate a Moon-centered or-

bit, the user follows the normal procedure for entering

_orce model changes, with the following additions:

1. Include IBODY1-2 under the &DYNSEC card. (The de-

fault value for IBODY1 is 1 (Earth).)

2. Include INClil,3 unaer the &DYNSEC card. (This is

optional, but the effects of Earth and Sun should

be included as noncentral body perturbations, and

the effects of the Moon must be removed.)

3. Include ICENT-2 under the &ORBIN card if the input

elements are Moon centered.

The followlng points should be noted concerning force model

changes for Moon-centered orbits:

• The same variables used to make changes to the

Earth potential field (MAXDE1, MAXORI) are used to

make changes to the lunar potential field (whose

default size is 4 by 4).

• Atmospheric drag is not a dynamic force with re-

spect to the Moon.

• The default output is with respect to the integra-

° tot central body--in this case, the Moon. If a

change is uesired, variable NOUT(3) must De changed

under the &ORBIN card.

3..2.3 FORCE MODEL INPUT EXAMPLE

This section presents primer Problem 5, which provides an

example of satellite orbit propagation requiring default

force model changes.

J

J

3 -30

PROBLEM 5: Given the following, propagate a satel!ice orbit

for 5 days, printing level 1 output every 12 hours:

Epoch:

Elements:

Coordinate system

of input:

Propagator:

Force model:

October 10, 1980, 00:00:00 GMT

Keplerian:

a = 8525.0 kilometers

e = 0.14

i = 68 degrees

= 91 degrees

= 93 degrees

T e 248 degrees

Earth-centered true Earth equator and

equinox of date

Time-regularized Cowell (step size =

100 steps per revolution)

8-by-8 Earth field, effects of Sun

and Moon included, resonance effects

included, no solar radiation, Harris-

Preister drag model with 2.2 araq co-

efficient and 0.02 drag coefficient

variation; spacecraft mass of

150 kiloarams, spacecraft area of

0.5 x 105 square kiiome_ers

AUTOMATIC SEQUENCE: The automatic sequence for solving

Problem 5 is as follows:

col. 1

+

DRIVEl

PRFCON

&DYNUP

AREA-.5D-5,SCMASS-150.,

CSUBDZ=2.2,RHOI=.02,

&END

&DYNSEC

MAXORI=8,MAXDEI=8,IRESNI=I,

IDRAGI=I,

&END

ORBINP

&ORBIN

IELEM=3

ELEM=801010.0,0.,

8525.,.14,68.,

91.,93.,248.,

PROPM='TRCOWL',H=I00.,

ISTCP=I,STPVAL=43200.,

3-31

IREPT=I0,

NOUT=I,

IDYN=2,

&END

ORBIT

EOF

The following points should be noted concerning this auto-

matic sequence:

• Because force model changes (Dynamics File updates)

are required, the DYNUPD card must be included between the

PRFCON card and the ORBINP card.

• The DYNUPD card must be followed by the &DYNUP

card. The &DYNUP card must be followed by the &DYNUP vari-

ables to be changed (see Table 3-3), which in this case in-

clude spacecraft area (AREA), spacecraft mass (SCMASS), drag

coefficient (CSUBDZ), and drag coefficient variation

(RHOI). The &DYNUP variabies must be followed by an &END

card.

• The first &END card must be followed by the &DYNSEC

card. The &DYNSEC card must be followed by the &DYNSEC var-

iables to be changed (see Table 3-3), which in this case in-

clude order and degree of potential t!ield (MAXC_l and

MAXDEI) ana switches for resonance potential (IRESNI) and

atmospheric drag (IDRAGI). Solar radiation pressure (ISPI)

is not included because its default value (2) provides the

required result. The noncentral body indicator (INCI) is

not included because its default value (2,3) provides the

required result (Moon and Sun). The polar motion switch

(IPMI) is not included since polar motion is not considered

in this case. The &DYNSEC variables must be followed by an

&END card.

• Variables are entered under the ORBINP card as in

Problem 2 (Section 3.1.6.1).

.j

J

3-32

• The stopping logic is as follows: propagation

stops on time (ISTOP=I) every 12 hours (STPVAL=43200.), and
this is repeatea 20 times _IREPT=20) for a total of i0 days.

• NOUT=I because level 1 output is desired.

• IDYN=2 because the Dynamics File is oeing updated.

The following aaditional points should oe noted:

• Both &DYNUPand &DYNSECmust be included even if no

variable changes are required for one of them.

• The following order of cards must be adhered to in

an orbit propagation with force model changes:

CO1• .K

DYNUPD

&DYNUP

(variables)

&END

&DYNSEC

(variables)

&END

ORBINP

&ORB IN

(variables;

&END

O RB IT

• The order of the variables unaer various & cards

(NAMELIST cards) is flexible• The variables are usually

l lstea in _he same order as they are found in tables.

• It is not necessary to use one card for each varia-

ble as has been done in previous examples. Ic is acceptaole

to include several variables and their values (separated by

commas) on the same line (e.g., MAXORI=8,MAXDEI=8,IRESNI=I,! .

However, the last variable value on each line must De fol-

lowed by a comma, and no GMAS input can extend beyond

column 64.

3-33

• Variable values in scientific notation such as

0.5 x 10 -5 must be expressed in aouble-precision expo-

nential form (.5D-5).

• When including changes to the force model, the user

must set IDYN=2 under the &ORBIN card.

OUTPUT: Figure 3-11 shows the printed output resulting from

the Problem 5 run.

3.3 STEPS IN PROPAGATING AN ORBIT WITH GMAS: A SUMMARY

As a brief summary of the material covered in Sections 2.1

and 3.2, this section specifies the step-by-step procedure

for propagating a satellite orbit using GMAS. The procedure

is as follows:

I. Develop an automatic sequence by following the

steps specified below. The column number specified

in parentheses indicates the column in which the

card's first letter must be punched.

a. Start with DRIVEl (column I) followed by

PRFCON (column i).

b. If the force model is not to be changed, go to

step h.

c. Determine the appropriate values of each vari-

able in Table 3-3. Note whether the variables

are under &DYNUP or &DYNSEC.

d. Include DYNUPD (column i) followed by &DYNUP

(column 2).

e. Include the appropriate dynamics variables (if

any) between columns 2 and 64.

f. include &END (column 2) followed by &_Y:SZC

(column 2).

J

_2

3-]4

,._
o

o

.go

q)

0

0

I

3-35

J

o

g •

hi

i •

j •

Include the appropriate dynamics variables (if

any) between columns 2 and 64, followed by

&END (column 2).

Include ORBINP (column i) followed by &ORBIN

(column 2).

Using Table C-I in the User's Guide, determine

the appropriate value of each variable. Enter

these values starting in column 2.

If force model changes were included in

steps c through g, include variable IDYN=2.

_. Follow the ,,--iabl,_s with &END (.....'.... n_

ORBIT (column i), and EOF (column i) .

Starting with the card deck shown in Figure 2-i,

replace the automatic sequence part of the deck

with the new automatic sequence created in step i.

Submit this deck.

J

3-36

SECTION 4 - AUTOMATIC SEQUENCES

The reader, having studied Sections i, 2, and 3 of this

primer, is now able to propagate a satellite orbit using

GMAS. He may, however, be questioning at this point whether

the complex procedure used to enter information into GMAS is

really necessary. Other software packages seem mdch more

straightforward. _hy not simply read data into GMAS in the

form of a cara stating the orbit propagation oo3ective , fol-

lowea Dy a number of caras specifying all the necessary pa-

rameter information?

The answer to cnis is tnat GMAS input aaca is not simply

uata. It Ls, rather, a nzgh-level programming [_nguag_.

£n_s language, callea tne automatic sequence, is a step-Dy-

step procedure for performing various tasks in a logical

way, allowing the passing of information from one tas_ to

another.

This section discusses the GMAS input language. Section 4.1

describes the various types of cards used in GMAS automatic

sequences. Section 4.2 provides examples of the use of

these cards.

4.1 AUTOMATIC SEQUENCE CARDS

Automatic sequences begin with the DRIVEl and PRFCON cards

ana end with an EOF card, except in some special cases (see

Section 5). The GMAS automatic sequence is conceptual!_, ,

much easier if _hese three cards are assumed to be permanent

fixtures in it. Therefore, all automatic sequences de-

scrioed in this section are assumed to begin with the DRIVEl

ana PRFCON cards ana end with an EOF card. The cards situ-

ated between the PRFCON card and the EOF card are called

4-i

GMASautomatic sequence cards.

cards are of five basic types:

Card Type

Utility
NAMELIST input

Dynamic array
Logical directive
Comment

GMASautomatic sequence

Start Column

Utility cards represent tasks that are to be accomplished

(e.g., propagating an orbit, creating a graph).
I

NAMELIST input cards are easily recognized. The first

NAMELIST card in a deck contains an ampersand (&) in col-

umn 2 followed by a NAMELIST name (e.g., &DYNUP, &DYNSEC,

&ORBIN). This first card is followed by cards containing a

collection of variables and their values separated by

commas, beginning in column 2 and extending no farther than

column 64. These cards are followed by an &END card, which

begins in column 2. These NAMELIST input cards are for user

input to the utilities.

Dynamic array cards are used to create or delete information

storage areas called dynamic arrays. These arrays are used

to pass information between utilities.

Logical directive cards direct the flow of the automatic se-

quence. The reader familiar with any computer programming

languages will recognize the logical directives as the

branch (GO TO) statements and IF tests used in a program.

Comment cards have no effect on the operation of the auto-

matic sequence, but they are often useful for description

and clarification.

The following subsections describe these five basic types of

automatic sequence cards.

4-2

4.1.1 UTILITY CARDS

Beginning with the simple automatic sequence described in

the solution to Problem 5 (Section 3.2.3), but stripping

away the NAMELIST input cards, the following cards remain:

DRIVEl
PRFCON
DYNUPD
ORBINP
ORBIT
EOF

The three cards between PRFCONand EOF are all utilities in

this case. DYNUPDis a utility that updates the force model

(Dynamics File) to be .,=e_ by the propagator. ORBINP, _e

orbit input processor utility, sets up all the propagation

information necessary to propagate the orbit• ORBIT ac-

tually propagates the orbit and prints out the results.

GMAS has a number of available utilities in addition to the

three specified above. Table 4-1 lists some of the cur-

rently available GMAS utilities. It should be noted that

the GMAS user is not restricted to GMAS utilities; he can

create his own utilities for his own mission-specific prob-

lems. The number of available utilities in this case is

virtually unlimited.

4.1.1.1 Example of Utility Card Use

As a simple example of utility card use, this section pre-

sents the following case, in which the objective is to per-

form the following tasks in the order specified:

i •

2.

3.

4.

5.

Update the force model (Dynamics File).

Process input for the orbit propagator•

Propagate an orbit.

Do some arithmetic on some existing dynamic arrays.

Print out dynamic array values.

4-3

rn
0

.,-I
.U
.,.4
,...4
.,-I
.u

r..9

I

,-I
.G
n3

£glLO6L

5 5

t_ O'J

o __ o ,_

_0

== o o_

z
0
k-
(2
_J

z z z v_ z
0 0 0 '" o

_ _ (.)

ELi _J Ug I.,U_ _ 0

5 5 5 "' 5
n-

O %9 O <

r_ n- n- I-- G:
gJ _.I t_l u. LM

D D D ¢n D

n-
O
u. <
0 Z
_u 0
D m
144
as <

n-
O n"
k- <
Z 0
o_

_ z)-
n-n- 0
O0 _"

0

DO Z O--_.._ ..=In"

z

)-

.3

S

=_z

_Fo _

_z= <
_OO z

_o>

- _ ;_ _ _ * _ >--_Z D

>=_ == <- o= <_T
==o E_ := °° o =_= -

-- ._ ZZ == _- _u _-

0 O0 O I o. _. o..

:> _ _. z _ z

-- -- 0 =.
-- u_ • z rn nn t-- UJ _-
rr > _ >. _" n- ._ mr" n-

4-4

In this case, the required utility cards are placed in the

automatic sequence (between PRFCON and EOF) as follows (see

Table 4-i):

D[_IVEI

PRFCON

DYNUPD

ORBINP

ORBIT

ARITH

PRTDYN

EOF

4.1.1.2 Core Requirements

When the computer starts running GMAS, it reserves a certain

memory storage area, called a region, for the program. The

size of this region, or core, is specified by the user on

the // EXEC GMAS,REGION.GO=376K card (see Figure 2-1).

As GMAS proceeds through the automatic sequence, it must

bring utilities into its region in order to execute them

(see Figure 4-1). If no more room is left in its region for

a utility that is needed, GMAS terminates. Therefore, it is

important to keep the region "clean" (i.e., to delete from

the region utilities that are no longer being used).

utility card. The user can include different combinations

of the letters L, X, D, and K after the utility name to in-

struct GMAS on the handling of the utillty. L tells GMAS to

load the utility in the GMAS region from the disk storage

space. X tells it to execute the utility. D tells it to

delete the utility from the region after executien. K tells

it to keep the utility in the region after execution. For

example, AVECON,LXK tells GMAS to load, execute, and keep

the AVECON utility. Status flags (L, X, D, and K) need net

always be included after a utility name, since the azsence

of status flags after a name causes _he com_uter _o _.... _F

execute, and delete the utility after execution (i.e. ce-

fault = LXD).

4-5

IBM S/360 MEMORY

EXECUTIVE

ORBINP

ORBIT

GMAS REGION
(376K)

=.,

o
P*

Figure 4-1. Accessing rT_i]ieie_

4-6

4. 1.2 NAMELIST IN[_U'PCARDS

the user and a utility.

input (see Table 4-1).
follows:

NAMELIST input is the primary means of communication between

Most utilities require NAMELIST

The rules for NAMELIST input are as

• N_MELIST input follows the utility card that is us-

ing it.

• On the first card, the symbol & must be in col-

umn 2, followed by the NAMELIST name.

• The next card must contain, starting in column 2

and extending no farther than column 64, a list of

variables and their values. Each value must De

followed immediately by a comma. It is to be noted

that blanks between the value and the comma are

treated as zeros (i.e., IELEM=I , is interpreted as

IELEM=10,).

• Values of variables that are designated as R*8 var-

iables must contain decimal points. ['4 vari_mles

cannot have decimal points.

• Th_ NAMELIST mu_t _e[mina_e with _END, either on a

separate card or following the comma that completes

the last data item.

The following is an example of NAMELIST input:

col. 2

&INPUT

ISWTCH=I,IFLAG=3,ITERO=I,17*0,

STATE=200.,5000.,2.D4,2.D-5,I.D-4,2.D-4,

&END

The following points should be noted regarding the example:

• ITERO is an 18-element array. Instead of entering

17 zeros on the card, it is acceptable tc .rite

lT_o.

4-7

Every line of NAMELIST variable input must end with
a comma.

Scientific notation must be replaced by double-
precision exponential notation (e.g., 3 x 104 =
3.D4, 2 x 10 -5 = 2.D-5).

The automatic sequence example presentea in Section 4.1.1.1

is ShOWnDe±ow witn the corresponding NAMELIST inpu_ (see
Table 4-1):

col. i
.¥

DRIVEl

PRFCON

D V_1[[n_

&DYNUP

(variaoles)

&END

&DYNSEC

(variables)
&END

ORBINP

&ORBIN

(variableS)

&END

ORBIT

A_ITH

&ARITH

(variables)
&END

PRTDYN

&PRTDY

(variables)

&END

EOF

N_MELIST variables are a feature of the IBM version of

FORTRAN. Reference 6 provides a complete description of

this feature.

4.1.3 DYNA_MIC ARRAY CARDS

Dynamic arrays can be thought of as variable arrays in -he

automatic sequence. They serve primarily as a T,ea_:s of .-om-

munication between utilities. To create a d',n_mic array,

the user mus= specify the array name, the type 3f var_.aole,

4-8

J

and _ne dimensions. TaBle 3-4 of the User's Guise specifies
the general format of the dynamic array allocation card.

NAMELIST VALUE can be used to input values into a aynamic

array. Table 3-5 of the User's Guide gives the rules for
the use of NAMELIST VALUE.

Dynamic arrays use space in the GMASregion. Therefore,
just as with utilities, it is preferable to keep tne region

free of dynamic arrays that are not being used (see Sec-

tion 4.1.1.2). To delete a dynamic array from the GMAS re-

gion, the user employs the deallocation card. Table 3-6 of

the User's Gulde specifies the [ormat of the deallocation

cars.

4.1. J. i l£xam_Les ot Dynamic Array Allocation

Taoles 3-4 through 3-6 of tne User's Guide specify the dy-

namic array card formats. Two examples of dynamic array

allocation are provided Below.

EXAMPLE I: The ob3ective is to allocate a one-dimensional,

t_ve-eiement, R"8 array named ALPHA and to fill the array

wi_n the numbers .i, .2, .3, .4, .5. The dynamic array

caras required to accomplish this are as follows:

col. 1

V

*ALPHA,A, R8, i, 5

&VALUE

D=.I, .2, .3, .4, .5,
&END

The following points snould be noted regarding these cards:

• On the first card, * denot__s that a dynamic array

is to be allocates; ALPHA is the name of the dynamic array

(maximum length = six characters) ; A denotes allocation; 1

aenotes a one-dimensional array; and 5 denotes five-element

length.

4-9

• To assign values to dynamic array ALPHA, the allo-
cation (*) card must be followed directly with a N;_MELIST

VALUE cara, which in turn must be followed by a card on

wnlcn D is set equal to the values in the array. Array
ALPHA is _nerefore stored as follows:

ALPHA_i) =. 1
ALPHA(2) =. 2

ALPHA(3) =. 3
ALPHA(4) =. 4

ALPHA(5)=.5

EXAMPLE 2: The oujective is to allocate a two-dimensional

1"4 array named BETA, wnere BETA is the 2-_y-3 matrix

The dynamic array cards necessary to accomplish this are as

follows:

col. 1

*BETA,A, I4,2,2,3

&VALUE

D=I,2,3,4,5,6,

&END

I_ s_ould be noted that althougn BETA is a two-dimensional

array, variable D cannot be multidimensional. To initialize

mulLidimenslonal dynamic arrays, the user must index vari-

able D _o refer to the corresponding position in a one-

dimensional array. Multidimensional arrays are s=ored wi_n

the first inaex increasing most rapidly, followed Ov the

second, ana so for%h. A general formula to relate this is

as follows: Given an M-by-N-by-P array, A, element A(x,y,z

may be referenced by the single subscript i, where

i = (z-I)MN + (y-l)M + x
.2

4-10

4.1.3.2 Rules for Positioning Dynamic Arrays in Automatic
Seauences

The following are rules for positioning dynamic arrays in

automatic sequences:

• Dynamic array names must be less than or equal to

six characters in length. VARIABLE is an illegal

name; VARIAB is acceptable.

• Dynamic arrays allocated in the beginning of the

automatic sequence must be placed directly after

the DRIVEl card or the PRFCON card. NAMELIST VALUE

must directly follow the allocation card of the dy-

namic array that it initializes.

• Cards relating to a specific utility should be

placed directly after the utility card and should

be in the following order:

- Dynamic array allocation statements and their

initialization NAMELISTs--These dynamic arrays

will be allocated and initialized before the

execution of the utility.

- Utility input data (through NAMELIST)--These

data will be read in during the execution of

the utility.

- Dynamic array deallocation statements--These

dynamic arrays will be deallocated after the

execution of the utility.

These rules are illustrated with the following hypothetical

example:

DRIVEl

PRFCON

*INDEX,A,I4_I,I
UTILI

UT!L2

*ARRI,A,R8,1,3
&VALUE

4-11

D=. 2, • 3D5, . 4 ,
&END

• ARR2,A,R8,1, 3
&UTIL

X=1.3,I--2,
&END

• *ARR2, INDEX
UTILJ

_J

In the at_tomatic sequence presented above, actions occur in

the _ollowing order:

i. The dynamic variable INDEX is a[locate_.

2. UTILI, a utility with no user input, is exec<:ted.

3. ARRI is allocated and initialized.

4. ARR2 is allocated.

5. UTIL2 is executed. During ihs execution, the

NAMELIST UTIL variables are read in.

6. After UTIL2 execution, dynamic arrays ARR2 and

INDEX are deleted. ARRI remains allocated.

4.1.4 LOGICAL DIRECTIVE CARDS

Logical directive cards are of four types: LABEL, L_)OP TO,

GO TO, and IF ... GO TO. These cards must immediately

precede a utility card or the EOF card. The following

sections describe the functions of the logical directive

cards and provide examples of their use.

4.1.4.1 LABEL XXXXXX

The LABEL card is used in conjunction with the other three

logical directive cards. It provides a reference in the

automatic sequence to which the logical directive cards are

directed. Table 3-9 of the User's Guide specifies the

format of the LABEL card.

J

4-12

4.1.4. 2 LOOP TO XXXXXX, I

Segments of an automatic sequence can be repeated (1) +_imes

through use of the LOOP TO and LABEL cards• Table 3-6 or

the User's Guide describes the general format of the LOOP TO

car(].

The £ollowing portlon of an automatic :_equence illustrate:_

%ne use of the LOOP TO card:

LOOP TO BOTTOM, 3

UTiLI

ORBINP

&ORBIN

(vat iaales)

&END

ORBIT

LABEL BOTTOM

UTIL2

Use of the preceding cards in an automatic sequence causes

the portion of the sequence from UTILI through ORBIT to be

repeated three times. Execution continues with UTIL2.

.1.4.3 GO TO XXXXXX

The GO TO statement is used for unconoitional transfer of

program operation to another point in an automatic se-

quence. In the statement GO TO XXXXXX, XXXXXX represents

the name given on the LABEL statement, which specifies the

point at WhiCh execution contlnues. Table 3-i0 of the

User's Guiae describes the general format of the GO _O card.

The rollowlng portlon o£ an automatic sequence ih_strates

the use of the GO TO card:

GO TO BOTTOM

UTILI

ORB INP

4-13

&ORBIN
(vat zables)

&END
O_ 1T
mABEL BOTTOM
UTIL2

Use of the preceazng car_s in an automatlc sequence r_sults

in tLle bypassing ot utilities UTILI, ORB[NP, aga ORBIT.
Sequence execution 3umps from the GO TO BOTTOMcard to the
LABEL BOTTOMcard, and execution continues with UTIL2.

4.1.4.4 IF (X.op.Y) GO TO XXXXXX

the IF statement allows an element off a evnamic acray (X) or

a aynamic variable I (X) to be logically tested against

another element of a dynamic array (Y), a dynamic variable

(Y), or a constant (Y). Dynamic arrays used in testing must

be one dimensional. If test conditions are satisfied, con-

t[ol is transferred to a LABEL statement containing the name

XXXXXX. Table 3"1i of the User's Guide describes the gen-

eral format of tne IF card•

In the following example of IF card use, ICOUNT, ITOTAL, and

vF[_re __ynamic arrays _-h:_- =,-_ :_catcd _z fol _

* _COUNT, _, I4, i, i

* ITOTAU,A, I4 ,i, I

*VEL,A,Rb,I,3

Therefore, ICOUNT and ITOTAL are one-elemen_ 1"4 dynamic

arrays, ana VEL is a three-element R*8 array. These arrays

are assumed to contain the following values: ICOUNT=I,

ITOTAL=4, and VEL=5.,4.,3..

IA dynamic variable is a one-elemen_ dynamic array.

._,,)

4-14

The following three IF GO TO tests are applied:

IF (ICOUNT.GT.0) GO TO END
UTILI
UTIL2

LABEL END

Since ICOUNT=I is greater than 0, automatic sequence execu-
tion skips to LABEL END.

IF (ICOUNT.GE.ITOTAL) GO TO 50
UTILI
UTIL2

LABEL 50

Since ICOUNT=I and TOTAL=5, the test is not satisfied;

therefore, the automatic sequence continues executing UTILI,
UTIL2, and so forth•

IF (VEL(3).LE.3.) GO TO TOWN

LABEL TOWN

Since the third element of the VEL array is 3., the test is

satisfied, and automatic sequence execution skips to LABEL

TOWN.

4 -i5

4.1.5 COMMENTC_RDS

Each comment card begins with the symbol + in its first col-

umn. Table 3-7 of the User's Guide describes the comment

card. Comments can appear anywhere in an automatic sequence

except within the bounds of a NAMELIST (i.e., between &NAME

and &END). They have no effect on the execution of the

automatic sequence• Comments (and all GMAS input) are

truncated beyond card column 64.

The following portion of an automatic sequence illustrates

the use of the comment card:

+PPOCFSS ORBIT INPUT INFORMATION

ORBINP

&ORBIN

(variables)

&END

+PROPAGATE THE ORBIT

ORBIT

+mHIS IS THE END

EOF

4.2 EXAMPLES OF AUTOMATTC SEQUENCE CAPD USE

This section provides two examples of automatic sequences

usinq the various types of cards described in Section 4.1.

Although the first example is not a typical satellite mis-

sion problem, it illustrates the use of logical directives

in an automatic sequence. It also illustrates the power of

the automatic sequence and the fact that the sequence is not

just "data." The second problem demonstrates how looping

and testing procedures can be incorporated into an automatic

sequence in the solution of a satellite mission problem.

4.2.1 P_OB!EM 6

PROBLEM: Given i0 numbers in a dynamic array (NUMBER), de-

termine the smallest number and print it out aloha with the

numbers.
J

4 -i6

AUTO_!ATIC SEQUE_ICE: Although a simple FO_TRA_ program could

be used to solve this problem, the GMASautomatic seauence
language is usea here rot solution. The automatic sequence

presented below solves Problem 6. Explanations are included

to clarify the actions implied by the automatic sequence.

Automatic Sequence Explanation

DRIVEl
PRFCON
+
+INPUT i0 NUMBERSIN NUMBERDYNAMIC
+ARRAY
+
*NUMBER,A,R8,1,10

&VALUE
D=5.,7.,II.,8.,I0.,25.,.7,.9,3.,58.,

&END
*WORK,A,R8,I,10
*SMALL,A,R8,1,1
+
+DETERMINETHE SMALLEST _UMBER
+
ARITH

&ARITH
ARRI='NUMBER',RESULT='SMALL ',

&END
ARITH

&ARITH
ARRI=NUMBER',RESULT='WORK',

&END
LOOP TO 100,9
ARITH

&ARITH
ARRI='WORK',LOCI=2,
RESULT='WORK',LENGTH=9,LOCR:I,

&END
IF (WORK(1).GE.SMALL) GO TO 90
ARITH

&ARITH
A_RI='WORK',RESULT='SMALL',

&END
LABEL 90
LABEL 100
+
+ PRINT CUT RESULTS
+

Comments

Allocate necessary
dynamic arrays

Comments

Put first number in
SMALL

Store numbers in a
working array

(WORK)

SHIFT WORK array

up one number

If WORK(l) is less

than SS!ALL, replace

SMALL by value in

WORK(l)

Comm__ n ts

4-!-

Automatic Sequence

PRTDYN
&PRTDY
NARRS=2,
ARRNAM='NUMBER','SMALL',
ARRTIT='NUMBERS','SMALLEST',
OUTFMT='F6.2','F6.2',

&END
EOF

Explanation

Print out numbers
and smallest num-
ber

The following points should be noted regarding this auto-

matic sequence:

• DRIVEl and PRFCON begin the automatic sequence.

• Next, three dynamic arrays are allocated. The

NUMBER array is filled with the I0 input numbers.

• The ARITH utility is very useful in the manipula-

tion of dynamic arrays. (Section 2.1 of the Software Re-

sources document provides a complete description of ARITH.)

ARITH was primarily designed to perform arithmetic on dy-

namic arrays, but it can also be used to transfer data from

one dynamic array to another. The first ARITH in the auto-

matic sequence takes the first element from the NUMBER

array, adds zero to it, and puts the result in the SMALL dy-

namic variable. The result is therefore a transfer of the

first element of the NUMBER array into SMALL. The second

ARITH uses the same technique to copy the NUMBER array into

the WORK array.

• Next, the LOOP card causes the following procedure

to be executed nine times:

- Shift the WORK array up one number.

- If WORK(l) > SMALL, go to the last step.
q

- Place the value from WORK(l) into SMALL.

- Go back to the first step.

• Finally, the NUMBER and SMALL dynamic arrays are

printed usinc the PRTDYN utility. (Section 5.3.10 and

4-1S

Tao±e D-6 of _he User's Guide provide a complete description

of the PRTDYN utility.)

OUTPUT: Figure 4-2 shows the printed output resulting from

the Problem 6 run.

4 .2.2 PROBLEM 7

Problem 7 is a mission analysis problem that involves trying

to circularize a drag-perturbed orbit while maintaining

perigee height (and _herefore avoiding impact . Figure 4-3

illustrates the logical flow of this problem, which is dis-

cussed below.

PROBLEM: Given the following, and starting wlth a drag-

perturoed satellite orbit with a perigee height of 150 kilo-

meters ana an apogee height of 1500 kilometers, propagate

this orbit until the apogee height drops below 400 kilo-

meters, keeping the perigee height between 145 and 150 kilo-

meters.

Epoch:

Elements:

Coordinate system

of input :

Propagator :

Force model:

January i0, 1981, 00:00:00 GMT

Kepierian:

a = 7,203 kilometers

e = 0.093704

i = i0 degrees

= 0 degrees

T = 0 degrees

Earth-centered true Earth equator and

equinox of date

Time-reqularized Cowel! (step size =

i00 steps per revolution)

4-by-4 Earth field, effects of Moon

and Sun included, Harris-Pr_ester

drag model

Print out the Keplerian elements and the osculating peri-

focal radius and height every 15th perigee passage. Stop

when t_e _erigee height is less than 145 kilometers. _hen

raise the perigee height 5 kilometers. Continue th_ proc-

ess until tne apogee height drops below,; 40C _ilomez_s.

4-19

4it4, 40'41'4J' 4F4F_ 4J, 41.4F 41,48. 4J, 48, 40, 41. 4F 4F 4J. 41F4O,4F 40,40, 41F4F 40.48'4t, 4F4J. 41, 4t, 4t, 4F4b ,_ 41.48,4Fe1, _ 41'4_48"4J. 41, et. 4J OQ4IpO 4F4_ 4F4e,

4HII 4t' 'N' 4ll 48. 4F 4F 41J 4t' 4F 4J. 4F O 4F 40, 4F 4j 41, 41. 41.4J. O _ O _O O Q Q O O O _ _ _ O Q '18"o' • 6 41. 4_ 4F ,_ 4t, D 'd' 4_ 41, 4ie.4b 4), 4F 4J, 4il. 4F4141,

u

,Jo

Z

J
.1

_0000000000

_0eoooeOoo J

Q
Z

I.-

't"

I.-
Q.

It

F.-
.,p

4J, 40,

4F41,
e_
641,

e6

41,41,

e_

6_

_e

_4

#e

N

J

r_

4t. el.
4t, ,n,

,UI, O
41,41,

_4e,

41,41,
41.0
41.41.

,ut._
,ut.48.

41.41,
4FO

_4F
,It, 41.
,or, 4_

041.

4t. 4t,

b41,
41,41,

,11.6
4t. go,
4t, 4_

,It, 4_

4J41,
4il, 4t.

,at, ,d.
o_

41, 4e,

E

O

c

-,.'.4

I

4-20

START

PROPAGATE
ORBIT UNTIL

PERIGEE HEIGHT
< 145 KILOMETERS

I PROPAGATETO

APOGEE

?

RAISE PERIGEE
HEIGHT

5 KILOMETERS;
LEAVE APOGEE

FIXED

I I

PROPAGATE ORBIT
UNTIL PERIGEE

HEIGHT < 145
KILOMETERS

YES

p

END

/ ,.

Figure 4-3. Logical Flow for Problem 7

4-21

7

AUTOMATIC SEQUENCE: The automatic sequence for solving thi_

problem is presented below. It is to be noted that spaces

in the sequence column are used to clarify the association

of sequence entries and explanatory comments and do not in-

uicate a break In the sequence or the use of blank cards.

Automatic Sequence

DRIVEl

PkFCON

*Pa_S,A,R_,2,2,2

DYNUPD

&DYNUP

&END

&DYNSEC

IDRAGI=I,

&END

O_bINP

&URBIN

IELEM=2,

ELEM=810110',0.,

7203. , .093704,10. ,

0.,0.,0.,

pROPM='TRCOWL' ,H =I00. ,

ISTOP=35, 13,

_'['PVAL=I45.,

IREPT=I,I,

ISKIP=0,14,

MULTI=I,17,

I FE_i=!,

IPARMS=I,2,3,#,5,6,29,22,

NOUT=4,IDYN=2,

&END

LABEL

ORBIT

DSTORE

&DSTOR

XN_EI='STATEF ' 'STATEF',LOCI=I,3,

XNAMEO='STATEI','STATEI',LOCO=I,3,

NUMWDS=I,7,

&END

ORBINP

&ORBIN

IELEM=0

pRCPM='TRCOWL',H=I00.,

ISTOP=I4,

Explanation

'F1jrr!. drag on

Process orbit input

information

Propagate until per-

igee height is less
than 145 kilometers

= fiTransfer hal ele

ments to STATEI for

processing by ORBINP

_2

! -22

Automatic Seauence

IPARMS=29,
NOUT=5,1DYN=2

&END
ORBIT

IF (PAR_MS(4).uE.400.0) GO TO C

DELTAV
&DELTA

ICORDG=2,
ITYPh=3,
IGOAL(4)=I,IGOAL(5)=I,IGOAL(8)=I,
GVAL(8)=5.0,

&iND
O_DINP

&OR_IN

PROPM='TRCOWL',H=I00.,
ISTOP=35,13,
STPVAL=I45.,
±kEPT=i,I
ISKIP=0,14,
MUL'rI=I,17,
ITER_I=I,
IPA_IS=1,2,3,4,5,6,29,22,
NOUT=4,IDYN=2,

&END
GO TO A
LABEL C
EOF

Explanation

Propagate to apogee.

Store apogee height in

PARMS array

If apogee height is

less than 400 kilo-

meters, exit

Raise perigee height

5 kitometers and place
new elements in STATEI

array for processing by
ORBINP

Process orbit input in-
formation

The following points should be noted concerning this auto-

matic sequence:

@ First, the PARMS array is allocated. This array is

usea to store the value of the current apogee neignt. If

tne current apogee height is less than 400 Kilometers, GMAS

execution terminates.

• DYNUPD is then called to set up uhe force model to

oe Jsec -or propagations (aefauit plus Harris-P__iest=_r drag

mouei ; .

4-23

• ORBINP is then called to provide the orbital infor-

mation for the propagator. IELEM=2 informs the propagator
that the input elements are Keplerian. ELEM gives the ini-
tial state elements of the satellite. The state is to be

propagated using a time-regularized Cowell propagator with

i00 steps per revolution (PROPM='TRCOWL',H=I00.). The stop-

ping conditions inform the propagator to stop every 15 peri-
gee passages of the satellite until the geodetic altitude

drops to 145 kilometers. At each stop the Keplerian ele-

ments, the geodetic height, and the osculating apogee height
will be printed out (IPARMS). IDYN is set to 2 to include

the updated dynamics file.

• ORBIT is called to propagate the satellite until

the perigee height (geodetic height) drops below 145 kilo-
meters.

• DSTOREis then called to transfer the final orbital

elements from the STATEF array to the STATEI array. This
must be done in order to continue propagation.

• ORBINP is called to provide orbital information for

the next propagation. IELEM=0 informs the propagator that

the input element state will be comi_ig from Lh_ STATEI _dy
instead of variable ELEM. The state will be propagated tc

apogee (ISTOP=I4). Then the geodetic height (apogee height)

at this point will be placed in the PARMSarray (at position
PARMS(4)). IDYN is set to 2 to include the updated dynamics

file.

• ORBIT is then called to propagate the satellite

from perigee (STATEI input state) to apogee and place the

geodetic height in the PARMS array.

• Next, a test is performed on the apogee height. If

the geodetic apogee height is less than or ecual to 400 kilo-

meters, execution continues at LASELC, and execution of the

4-24

automatic sequence terminates. Otherwise, processing con-
tinues with a call to DELTAV.

• DELTAV is called to raise the perigee height
5 kilometers anG place the new orbital elements in tbe

STATEI array for processing by ORBINP. DELTAV is a GMAS

utility that is very useful for satellite maneuver approxi-

mations. In this case, it takes the current satellite state

from the STATEF array. It then determines the change in the

velocity vector necessary to raise perigee 5 kilometers

while maintaining the other state elements. Then it adds

this velocity vector to the velocity component of the STATEF

vector and puts the result in th_ STATEI array. It al:_o

prints out a page of information relating to the change in

elements. Sec¢ion 2.2 of the GMAS Software Resources decu-

ment provides a complete description of the DELTAV utility.

• Next, ORBINP is called to process the orbit input

information. IELEM=0 informs the propagator that the input

state will be through dynamic array STATEI (which was outpu¢

from DELTAV in this case). The other variables under

NAMELIST ORBIN are the same as those in the previous ORBIN

NAMELIST.

• GO TO A causes execution to continue at label A.

ORBIT is called again to propagate the satellite until the

perigee height drops below 145 kilometers.

• This loop continues until apogee is less than or

equal to 400 kilometers.

OUTPUT: Figure 4-4 shows the printed output resulting from

the Problem 7 run.

NOTE: [n pursuing this problem further, the user may _ant

to graph the perigee and apogee height values, rhia can he

done by allocating the proper arrays an_ using the 2RE/LT

4-25

ant/ PuTDYN utilities. Figure 4-5 snows an automatic se-

quence that will accomplish tnis. Figure 4-6 illustrates

the graphs generated oy the automatic sequence in Figure 4--5.

4 -26

." : .: .: : : o: o= .: .: : •
- _:._i_i_!iiiii'!=-'ii_ii!iii i

i i " i "• . . : . : z,.. .- :-

lZ f,,* ZZ l_][Z P'I _Z ,,_ Z Z

:o. : "" : : :

"'i i i • i "_

"_ZO_ @ 4[Zlq_ 4) 4lZ._41i @ 4Z Oil, 4) qZ P'.II 0 4ZN 4r ii. 4[Z ill _ @
_O_P_4 _lq@ _Ne roll) lit I_ _l_ _ _ ¢) mhle m 4'@ _

II! tlt Iit I_t l_l I_t @_t I_1 l_l I.I I_t lot

..... :* U== U=; _ g_i

_i i_i<i<i<i<i i _ i i
_: .-. o ,o ' _o-'" " - ""

o..;:..._i."._._:-_.._....-o.:.._-;.".g..._i. ._'- _-._i._i'_.
_"Zl • _ -zI_.. ! _Zl_-O i,- m.. -zI_-@ _X zm,- @ I-._" z_ • ._r _l I,. @

f_--4

G

_H

p_

_J
P4

0

0

4J

4J

@

4J

I

I

@

C_

4-27

z

v • • •

.... +++++++++ ...I I I IIIIIII I

0 I OQO 000 .0 l 0000 I O0 0 I

...... 0 0 _

+ +++++_• .+o::;... o.+°"....... _ •........... +:_
mqivq° ++°m+°

+ _l+°l 000 _1 *+ +0 • li_ • I+° • • • I+1+11

II-- l

p,.

_j

0

+.j

..J

©

_0
0

I

@

.,-+

4-28

i : " _ : _" " :"ii il
0 • _ (> • t f'. 4' 4' f'l rl * r_ _ _ • •

.- .: • . . .: •

:° ° ° '° i- i. i ii iooi i i _ - i i _
ZZ_ ZZe • Z_O •

- o " _.- _- • : : : %$ *

• ZQ * i._ . =G *

: : : : _ : _ ,, _,

. , , :. : , . : .

~ :.... :.- :-_ :~ :_- :- :o. :-: :,- :,: :_ :
.)*_) : .J.O*J'" : .).0 : ,ir_ : _rl_o'U_t" : q,l_O_" : .),0 : .J.o_)m" : _o : _t_t. : ,=m. : ._e. :

•).o _r).° ,e_o

.... :.:. .:.Oe °4) *0• cOO _e •

": U:: o _:: ° ._z: _. _ o " _ * .• _, • _. . : _. _. _:, _:.

!_de "14= 4_ •_4) *. P3(_• :OeOe -l_r*

": :'" ::_-: _,: "-'-: :=--::_-:"" : " i '-" " '_ " _.;"

c_

L_

o

P_

p.

_J

o

E
o

4_

_L

4
I

2)

4-29

Z

• ***.

NO0_O0
***_°+o+ ,,,ooo

lee_01 I 000 I
!

04'0

S._S
o o
Qoo

oo"I,l,

g_gggg_ +oo.oo + _gggg $$U_g
• - • • i_oooo • • • o0_oooo o*

?o.+o_o+_o+ +0 Nooooo +oo+.+

oo*o*6o* ooo go OGo+,,,?, o +_
I

w_o_o o_o

. +++++o +oo

fll_llfO +++

flmm I I I I

A

C_

'-+--1

0

e-

p_

0

,..Q
0

0

©

@
4_

C

I

.;.,_

4-30

U-4
o

v

e_

p_

,_q
o

o

4..1

4_

o

'-'d

.,_

I

"I

.,-I

4-31

8
Z

OMC)O_N OO01'.. I _ OmO

+_00¢1'0 • • _ .2,"*Q

: _ooooo+o..._o_o_ _:o
0 *000 • * * *

I 000
_OI $ 007
!

*qOQ am ** *_oooo ,m,

o--oooOoooQm -o _ooooo _o_:_ ...*** i. * * I 000
O0 0 °1 I

I

v_ qe_a)N qPN r_oe_ o 10,"*m _ o u..,_ FiqO +_ r+lo ©+qD

+_o---+_--_o++_"°"m®+oo" "_+ _

,. ,.,.,_+,..o ,.,...<,, o0_+

I I ! I

0 g,

*e,.

#'II"1p'l I"I e +"sQ _ _i, _I Ol l+,*,OO__ ,j ,, 0 _ 0

............ ,,,,,,.. ° _',,,, g_gg

,.,,.,., .,, _? ,.,.,+_. . <, ,,,,,.,.., ,o,.+,
11131*

_" ZIIIW

oooo_oo elo_ _ _ ex_oo_ _ _

Z

; ;o
. , : ++

++ ..,.,. ...+ +oo__.,,.,. ++!
-- I+Z'lu.< +... I'*_ Ot " l _ I Ict 4 r..:O. I _' _U_ tu a) 3 Itdller 4 ..+.v.

'-1-4

0

c-

O

0

0

,"D
.1-1

I

4-32

u_
o

[_
-....

r--

6

,.Q
0

0

4.J

4J

o

_J
4J

!

4-33

0_. * * * ! 000 "_00
0 *00_ * * * * • * "°'o"°' oe_ _2_xq '° °O0 *0 *_0 * *_ *

•'_, ?' ° ,_o" o, oo_
i

I.- _, * * * r**n,.t_ .,)_,0_,.'. _._ -_'_ •. •
_.m m_e_ oO o _1 I I

L_
c

co

r-

r-,-

o

E
o

J,J

J.J

_J

.,-I

_r

I

_J

4-34

: o: :
. =?:

e • •

XZ_ • tZ_ • :I[Z_ •

'.: ,-_ _- :

4_

_: : +++: _:
(Z • Z • • Z • • Z •

4_ eP"l 4_

_.lz • -.z : *.z :

eJ.o e_o el-_

• oo_,e_" Z.

?+:i '
4e ,le <e

_e 41_e e q!lV'
_-* • _ee eUq,

om,_ *e , *

c_

u_
o

o

E
o

D.,

©

I

....4

4-35

LSER CA_O INPUT FOR THIS I;UN

6G_IASEX SEQI'_.AH ==° CARO¢.. ° • [UP_AT=t" • IBATCH=I • &ENO
CRIVEI

4. ALLOCATE OYhAMIC ARRAYS
*PAI='4SwAjp6,?og, ;0
SMAXPLT pA , T4. o 1• 1

&VALJE D= L"Cl &END
dlEl_OCHo Ae Q_I I •I

IMAXI TI) t A t [4tlll
CVALUE D=I>, &EI_D

= |COUNToAo_ie lol
eTINEoA•RSol •100
ePERHT•AePB• I olj0

&VALUE 0='10._'('150,0• CEND
*APOHT • A•PI_o I •100

&VALUE 3==I00WlS00,Go CENO
=PIDLCT,A,!4•I =11 .
_¢:FCON
e SET FOPC F- HCDEL FCR PROPAGATION
9 YPI tJP I'_

_,0 YN UP
&E NO

_{:) YN SE C

.'OPAGI=I,
6ENO

• INPUT INITIAL. STATE• STCPPANG CCNOITIGNS
OqBINP

&_.C'R [N
I ELE MI2 •
ELEH=8lOl I0.0= O.G•

7203,0• 0.0(;3704, 10.0• 3e0 *0*
PP_P'_._* TRC_t¢.* , HtlCC.'_o

[STOP=I ,]5.12. 13•

STPVAL=Z.592DO •145.0•
IREPT=I•I=I,

ISKIP=O •0, la•

MULT!=I .1*17•

ITERM=I,2,
I DAPMS=I *2 o3 **. •5 *E, 2_;, 22,
NOUT= 6, IOYh=2,

GENO
• SAVE J• _ EPGCH
•STORE
¢DSTOP
XNAMEI=*STATEI *•LOCI=I*

X NAME•'= 'EPOCH* •LCCC= 1,
NIJMWOS=I•

¢E NO
• tNITTAL[ZE TIME _I_RAY 5C T:-i&T PCSSIaLE
+ UNUSED PCINTS BILL NOT PLOT AS ZERO
A"_I TH

_ARITH
ARRI=' TIME t ,
AI_R 2= *EPCCH • t
CCNST= o ARP2 • •
LGNTHBt)_),

_ENO
• BEGZN LC{:_:, INCF;EkENT AN•]rEST [TERATICN COUNTER
LABEL A
I NC _=EM

t.I NCRE
XNAMEa**ICOUNT I i LCC=I, INCI_=I., _,

r.EN0
IF (ICGUNT .GT. /,AXITR) GO TCI C
• PROPAGATE UNTIL FERIGEE FAI. LS
CRBTT
• TEST FOR PLCT ARRAYS FULL
IF (NPLOT(I) .GE, MAJ(FLT) GC TO C
• PUT PARMS INFO IN f_LnT aRRAYS
LABEL B
PREPL T, LXK

GPREPL
I NDEX=t ,8,9,
XNAME=eTZNE•, * PERI-IT e ••APOHT•.
[STAP T=2,2 *2•

rEND
• MOVE STATEF TO STATE| FCR _I;QPAGATGR RESTART
OSTORE

GO STOR
XNAIqE'Z:•STATI[IWr** *STATEF*•LCCIz 1,'II*

XNAMEO: o STATE l * • * ST& TEI i t I. OC_ 1 * 3*
NUMWOSm ! • 7,

CEND
• SET APOGEE .CTOF

Figure 4-5. G_S Automatic Sequence f_r 2lot Solution

to Problem 7 (1 of 2)

4-36

C_B INP

T Et.E w= '.
_O_u:m e TQCO __ ° o Pm].C C.Oe

I ST_O=I •1_,
I TEFM=2,
".oA_-$== 29,
"_CUT=_t
I DYPI=2o

r.ENO
+ D_I=*,GATE TC A_0_EE F(3R 0EL TAV
+ (_'UST RAISE REI:IGEE FRC'4 A_GEE}
C_RTT
÷ TFST FOR END CF _¢IUOV
?F (R&PMS(LI) ,LEo 4CG,¢) GC TO C
÷ PAISE PE[-IC, EE _... KM
0ELTAV

&OELTA
[cor',DG_ 2 i
.TYO=2 e
I Gr'AL (.1.) =1 , :GCAI.(S)=1,
I GCAL(,_) :=lw
&VAL(8) =5.') •

6E NO
_. FESET STrP_ING CCl_DITICNS ,_NO RETtJ_N FOQ _EXT ITEOATICN
ecqtNP
• oAD._So I•_8m2o9o23

r.V&L!)- ¢ O_=tSOeO,0e &EhC
_3P_I rl

[r tr.. Ma ,_ e
¢IROPMmeTRCCI_IL.° m halCC=Oi
! ST')P=I e15.13o L3w
3TDVAL =_.,,_92Db m1'4.5, _ m
I':EPT=!,I,,1,
I SKIP=O mOo t4m

'4ULTI=L mL mite
:TEc_Malm2o
[=AP_IS=_ o2 o3m4 m5 me.,2c, t22,
,4t"UT- Ao IDVN- 2m

¢'.E =lO
GG TO A
+ A"JJ'JS'r TI,-E ARRAY TO 3I_E JAYS FROP* EPOCH
L z_OEL C
A_I TH

r.AR IT_

FI 2= t EPGCH om
C CHST= _ ARP :_ • e
013me- e m _t,,TH ml 00 m

&_..NO
+ ,_',E'.N F..q A T E PL (.T S

;,P I. TD Y
NYA _,F_ S= 1 •
XAPRAY=' TIME' o
YARFAY= 'mERI-f'r ' m
tmt.CT=t m IGI:;IO=O m
XTI TLE== 0DAYS FROM

CE NO
PLTDYN

PPLTDY
NYAPF Sa_ 1 e
XARPAYmeTINIre m
Y ARR Aym ° APOI",T * •
IPL_ r,,t m IGKiJ-,}.

XTITLE=ooAys FROM E_:CCH',

YTITL._ueEQUATORIAL AFOGEE PEI,,_HT t"

8EHO

IF _I,..OTS wERE GENERATE3 :)E(.AUSE _l-Ol _qRAYS #ERE FULL,ZEFPC NQLCT ARRAYt, RESTORE f IME ARRAY TO JDm _ND CCNT[NUE

IF (NPLQT(!) ,LT • MAXRLT) ._O TO D
• RT "rM
eNPLOTt I m _e I el 1

_.V AL'JE Oral I e,Om &ENC
&AR I TH

AI_R 1= a TTWE ' m

ARR2= • EPCCH o m
CONSTm0 ARR2 ••
L GNTI-t_ 1 O0 9

&ENO
GO TO El
+ EHD CF AUTOWAT_C SEQUENCE

LABEL O
EQF

?igure 4-5. G_%AS Automatic Sequence for Plot Solution

to Problem 7 (2 of 2)

4-3-

z!

_t

i

I

_t
_t

Jll
OI

!

oi

el
ol

_,l+.

t

o I,Q
I

-- :IO:Q
• -wo

-r_iP
+ .-

, +_-+
• • . + . , ° . • ,

o

0

o

J
I

4-38

X
I

®I
rnl

il

;1

_g

:
I

111
%1
4,1
O!

%!

I

el

o

!

N

N

d, 0
0

N

I
I

I "
I

q
!

• "_ . . _. • a

o ,. _ = .

A

o

_J
o

_j

..Q
0

_D
I

4-39

SECTION 5 - SPECIAL USES GF GMAS

This section contains a collection oi a_<_<a<_c sequenc_}s

that perform various tasks. These automatic sequences are

valuable as illustrations of various useful GMAS capabili-

ties. This section can also be used as a basic guide to

these particular GMAS capabilities, which include ORBIT File

creation and reading (Section 5.1), satellite state element

conversion (Section 5.2), orbital parameter comparison graph

creation (Section 5.3), Monte Carlo analysis (Section 5.4),

targeting and optimization (Section 5.5) , ant averaged orbit

propagation (Section 5.6).

5.1 ORBIT FILE CREATION AND READING

5.1.i ORBIT FILE DEFINED

An ORBIT File is a history, stored on disk or tape, ef a

satellite's accelerations throughout a particular propaga-

tion. In a normal orbit propagation, the orbit propagator

continues until it hits a stopping condition--for example,

1 day. It then prints out various parameter information

pertaining to the state of the satellite at that stopping

point. The user does not, however, have access to any of

the satellite states between epoch and (in this example)

1 day. An ORBIT File is a way of capturing continuously the

path of the satellite during the propagation. This is ac-

complished by storing the satellite's acceleration compo-

nents at short time intervals throughout its propagation.

These accelerations are stored on a disk er tape file. Once

an ORBIT File has been created, satellite elements can be

retrieved at any point within the CRBIT File span without

running the propagator again. ORBIT files are particularly

useful in cases in which many arbitrary points in _he propa-

gation of an orbit are to be used in a pr,:gram. E:<]mpies <f

such use include orbital parameter comparison graFning and

averaged element conversion processes.

5-1

5.1.2 WRITING AN ORBIT FILE

To construct a deck that will create an ORBIT File, the user

should proceed as follows:

i. Include the following JCL cards after the // EXEC

GMAS,... card in the standard input deck (see Figure 2-1):

//FTI2F001 DD DSN=&&ORBIT,UNIT=(DISK,3),DISP=(NEW,PASS),

// DCB=(RECFM=VS,LRECL=I096,BLKSIZE=II00) ,

// SPACE=(CYL, (5,5),RLSE)

These cards provide for a place on a disk where an ORBIT

File containing up to about 4 months' worth of data can be

stored. When this ORBIT File is created, it will be written

out to a disk and have the name &&ORBIT. This is a tem-

porary file and will be deleted when the GM_S run is over.

If the user wishes to make the file a permanent one that can

be used at a later aate, he must make changes to the card

formats specified above. The cards necessary to create a

permanent file on disk are as follows:

//FTI2F001 DD DSN=userid.OBS.DATA,UNIT=DISK,VOL=SER=DISKx_/x,

// DISP=(NEW,CATLG),DCB=(RECFM=VS,LRECL=I096,BLKSIZE=!I00),

// SPACE=(CYL,_)

where userid in the user's computer identification (_!_ich

must be the same as the ID on the first card of the input

deck (see Figure 2-1)); xx is the iaentification code for

the disk that is to contain the ORBIT File; and n is the

amount of space (in cylinders) required on the disk for this

file. Although the size of n varies, generally 20 cylinders

of space is required for each month of propagation using tne

Cowell propagator with a 100-second step size. (For example,

with a 100-second step size, for a 3-month file, n = 60;

with a 200-second step size, for a 1-month file, n = I0.)

The card required to create a permanent file on tape is as

follows:

//FTI2F001 DD DSN=userid.DBS.DATA,VOL=SES=taDeid

5-2

where userid is the user's ID, and tapeid is the tape iden-
tification number.

2. Incluae the Dynamics File update utility, DYNUPD,
in the automatic sequence.

3. Include the following variables and their values in

NAMELIST DYNUP (see words 60 through 64, record 3, of

Table D-2 in the User's Guide):

Variable Dimension

YMDIN 1 _'8

YMDFN 1 R*8

Description Default

Year, month, and

day of Deginnina

of ORBIT File

HMSIN 1 R*8 Hour, minute, and 120000.0

second of begin-

ning of ORBIT File

Year, month, and day

of end of ORBIT

File

HMSFN 1 R*8 Hour, minute, and 120000.0

second of end of

ORBIT File

Flag indicating

whether an ORBIT

File is to be

written

IOI{BFI i 1"4 2

7001_i.i

990101.0

Variables YMDIN, HMSIN, YMDFN, and HMSFN must be included.

These are of the form YYMMDD.,HHMMSS.S, where

YY = last two digits of the year (e.g., 80 of 1980)

MM = two digits representing the month e.a., 06 for

June)

DD = two digits representing the day

HH = two digits representing the hour

MM = two digits representing the minute

SS.S = three digits representing the second acd decimal

4. Set IOP, BFI=I to indicate th_ an OFBIT File is

being created.

5-3

5. Inc!uae __heORBINP card along with _he orbital in o

LOrm_,tlon unae[NAMELIST ORBIN. The orbit pr_pagation t_:ne

interval muse overlap the ORBIT File interval given in

NAMELIST DYNUP. Set PROPM='COWELL ' or 'TRCOWL'• Set IDYN=2

to _ncluae _he Dynamics File update.

A£ter performing steps i through 5, the card deck input

snoul_ oe in the following £orm:

//userid JOB...

//*FORMAT...

//*FORMAT...

// EXEC G_S,...

//FTIiF001 DD DSN=...

/I
//
//GO.DATA5 DD *

&CONTRL...

&GMASEX...

DRIVEl

PRFCON

DYNUPD

&DYNUP

YMDIN=...,HMSIN=...,

YMDFN=...,HMSFN=...,

IORBFI=I,

(dynamic variables)
&END

&DYNSEC

&END

ORBINP

&ORBIN

IELEM=(same as YMDIN above), (same as HMSIN above},

(elements) ,

(_nput variaoles_

ISTOP=I,998

STPVAL=_same as YMDFN},(3ame as HMSFN + H)

&END

URB[T

_OF

SectLon 9.4 (Case 4} in the User's Guide provides an example

of an automatic sequence to create an ORBIT File•

5-4

5.1.3 READING AN ORBIT FILE

To Dui±d a aeck that will read an ORBIT File, the _ser

snou±u proceea as follows:

i. If a temporary ORBI_ File was created earlier in

une sam_ run Dy the method aescribed in Section 5.1.2, go to

step 2. It the ORBIT File was create_ previously on disk

ana stored by the method describee in Section 5.1.2, include

_ne following card after the // EXEC GMAS,... card:

//FTI2F001 DD DSN=userid.0BS.DATA,DISP=SHR

If the ORBIT File was created previously on tape and stered

oy the mecl]od described in Section 5. [.2, LncL1:de th_

following card after the // EXEC GMAS,... card:

//FTI2F001 DD DSN=userid.0BS.DATA,VOL=SER=tap_ia

2. Include the ORBINP card. There are nonstandard

uses o_ the variables in NAMEL[ST ORBIN for r_auing orbit

files. The following variables must be included:

Varlable Value/Explanation

iCENT

_:LEM

PRO PM

H

[STOP

STPVAL

['"EI{M

=0 (to indicate that a sequential file is to

be read)

=&YYMMDD.,HHMMSS.S,6*0., where YYMMDD. is _he

year, month, and day of the beginning of re-

trieval, and HHMMSS.S is the hour, minu<e, and

secona of the beginning of retrieval. The

date specified by ELEM mus_ fall between the

dates of the ORBIT File (given under DYNUPD)

='FROG' (File Retrieval Orbit Generator)

=step size of 'FROG'

=L,998,...

=(same as YMDFN , (same as iIMSFN) ,...

alt is. advisable no incl,ade tne end of the file time as a

_nopping condition. If ".n'_s is not aone, 'FROG' may "jump

off" the ena of tne file before completing stopping condi-

-ions.

5-5

After performing steps 1 thrsugh 3, the card ceck input
should be in the following form:

//userid JOB...

//*FORMAT...

//*FORN_...

// EXEC GMAS,...

//FTI2F001 DD DSN=...

//
//
//GO.DATAS DD *

&CONTROL...

&GMASEX...

DRIVEl

PRFCON

ORBINP

&ORBIN

ICENT=0,

ELEM=YYMMDD.,HHMMSS.S,6*0.,

PROPM='FROG',H=0.,

ISTOP=I,998,...

STPVAL=(same as YMDFN),(same as HMSFN),...

(other desired stopping variables)

ITERM=I,

&END

ORBIT

EOF

Section 9.5 (Case 5) of the User's Guide orovides sn exemple

of an automatic sequence to read an ORBIT File.

5.2 SATELLITE STATE ELEMENT CONVERSION

Conversion of satellite elements from one state to another

(e.g., Cartesian mean of 1950.0 to Keplerian true of date)

is often desirable. Te accomplish this, the user must ir-

clude an ORBINP card and the following variables in NAS_ELIST

ORBIN:

Variab]e

ELEM

IELEM

Value/E×planation

Epoch and elements to be)

transformed

Type of input elements

User's Guide,

Table C-la

5-6

Variable

ICENT

ICORD

IPOPT

NOUT

IPARMS

Value/Explanation

Central body of input coordi-

nate system

Input coordinate system

= 99 (to prevent a call to the

propagator, which is not needed

in this case)

=n,y,z, where n denotes the

output level desired, y de-

notes the output coordinate

system, and z denotes the cen-

tral body of the output coor-

dinate system

=up to i0 elements (for

n=4, 5, or 6)

Reference

User's Guide,

Table C-la

User's Guide,

Table C-ib

User's Guide,

Table C-]d

User's Guide,

Table C-6c

An example of satellite state element conversion using GMAS

is provided below.

PPOBLEM: Given the following satellite state, convert this

state to Earth-centered true Earth equator and equinox of

date Kep!erian elements with mean anomaly anc print out the

results:

Epoch:

Coordinate system

of input:

Elements:

Jenuary 27, 1980; 02:05:02 GM%

Earth-centered mean of 1950.0 Earth

equator and equinox

Cartesian:

x = 6680 kilometers

v m O k[|omet,_rr;

z " 0 kilometers

i = 0 kilometers per seconcz

= 7.951 kilometers oer s_cond

- 2.H94 kilom,_ters per :ocond

AUTOMATIC SEQUENCE: The automatic sequence for performina

this transformation is as follows:

DRIVEl

PRFCON

ORBINP

&ORBIN

IELZM=I,ICORD=I,

ELZM=800127.,20502.,

6680.,0.,0.,

0.,7.951,2.894,

5-7

IPOPT=99 ,
NOUT=4,i, l,

IPARMS=I,2,3,4,5, 20,
&END

O RB I T

EOF

OUTPUT: Figure 5-£ shows the printed output resulting from

the execution of the preceding automatic sequence.

5.3 ORBITAL PARAMETER COMPARISON GRAPH CREATION

Using a special GMAS parameter module, COMPLM (instead of

GPARM), in conjunction with various utilities, the user can

create orbital parameter comparison graphs over a given time

span. This is accomplished by comparing parame_r_ _]_,1-

latea from an ORBIT File to parameters generated at each

stop of the propagator. The parameter differences are

storea in dynamic arrays, ana the PLTDYN utility is used to

plot their graphs. Figure 5-2 illustrates the logical flow

eL tl_ orbital par qnet_r comparison grdpn automatic 3equeqce.

%o set up an orbital parameter comparison run, the user

srlould proceea as foliows:

I. Determine the necessary information. The following

list specifies the 1_ntormatlon that mutt be deter_mined ,-_i,_n,_

w [I.h thu v ,.i J. ,j (2 ::j Izt;[lib I.:] [n[o[llldlg 1011 _::;,2,] 111 tilt, aUt_Ollhjl: L,:

sequence example presented in this section:

Information

Comparison span times:

Beginning time

End time

Oroital information for two orbits

(e.g., propagator, state, dynamics)

Time increment size (aC) (points

are plottea _very ac seconds)

Value Ln E:,amP[.e

February I0, 1981;
05:30

February 20, 1981;

18:00

3600 s'ecc nd s

--J

CLEAR
PARMS ARRAY

NO

DYNUPD
ORBINP
ORBIT

CREATE AN ORBIT
FILE OVER

COMPARISON TIME
SPAN (ORBIT 1)

DYNUPD
ORBINP

SET UP DYNAMICS
AND INPUT ORBITAL;

INFORMATION FOR
ORBIT 2

PREPLT]

CONVEFI r I'A|]M5
ARRAY I'O

ONE DIMENSIONAL
ARRAY

PLTDYN i

PRINT GRAPHS OF
ORBITAL

PARAMETER
DIFFERENCES

()END

Figure 5-2. Logical Flow of Orbital Element Ccmparison

Graph Automatic Sequence .J

5-10

In_ormaEion Value in Example

Comparison quanci<_es _from Semima3or axis
Table C-4 of tne User's Guide) differences (7)

(kilometers); ec-
centricity dif-
ferences (8)

2. Include the following JCL card after the // EXEC

GMAS,... card in the standard input deck (see Figure 2-1):

//FTI2F001 DD DSN=&&ORBIT,UNIT=(DISK,3),DISP=(NEW,PASS ,

// DCB=(RECFM=VS,LRECL=I096,BLKSIZE=II00) ,

// SPACE=(CYL,(5,5),RLSE)

3. Use the automatic sequence presented following this

procedure as a prototype, filling in the underlined areas

wltn the necessary specific-case-dependent information (from

step I). This example was developed for plotting differ-

ences in two parameters. It will produce two parameter

graphs (difference in semimajor axis (aa) versus time and

al_erence in eccentricity (be) versus time). Input [or

parameter comparison graphs is specified Oelow; the circlet

letter oy each item is repeated in tn_ automatic sequence

example a< tne corresponding point.

ii]pdL ti,e nU*_IO_LS (_t_LtiI*_ _t th_ fuu_t[* ele-

ment) corresponding to the desired output graphs from

Taoie C-4 of the User's Guide.

Allocate a dynamic array for each comparison

parameter from step@.

Include indexes of the positions of these pa-

rameters in the PAP_IS array (see Section C.4.2.2 of <he

User's Guide).

Include the names of the dynamic arrays allo-

cated _n stepC).

[e_ inciuue .a PLI'DY[_ Jtz ty Lot eacn comparison

parameter with tne parameter's dynamic array name at posi-

tion@in the example.

5 -ii

Two additional points must be noted here:

• If the user is using a preexisting ORBIT File for
his comparison, he must (i) include an FTI2F001 card indi-

cating where the file is located (see Section 5.1.3 of this

document) and (2) omit the first DYNUPD, ORBINP, and ORBIT

ucillties in the example automatic sequence.

• Radial, cross-tracK, along-track, and coral errors
are always computed and placed in position columns 3, 4, 5,

and 6, respectively, in the PARMSarray. Graphs of these
can De created using the procedure descrioed above, except

the user does not need to add numbers in part a of step 3.

The automatic sequence _or a comparison run is presented be-

low. It is to be noted that slJac,:s in tile sequence column

ate useu to clarify the association ,_t __qutnce _ntries in_i

explanatory comments anu do not indicate_ _ a break in the

sequence or the use of blank cards.

Automatic Seauence

DRIVEl

P RFCON

*PAR/MS,A, R8,2,11,45

._,A, ,1,45

* DELA,A, R8, i, 45

*DELE,A,R8, l, 45

DYNUPD

&DYNUP

IORBFI=I,

YMDIN=810 Zl0., _MSIN=53000.,

YMDFN=810220. ,HMSFN=180000.,

(orbit ± dynamics variables)
&END

&DYNSEC

(orbit i dynamics variables)
&END

O_S[NP

_OHSIN

I ELEM=I, ICORD = i, ICENT=I,

EL£M=S10210.,53000. ,

Explanation

Comparison begin time

Comparison end time

Comparison begin time

(epoch)

5-12

Automatic Sequence

(orbit 1 elements)
PkOPM=' 'IRCOWL ', H=I00. ,

IST_P=I, 99_ ,

STPVAL=8£02z0. ,la0000. ,

IDEL=I, IDYN=2,

&END

O RB IT

OYNUPD

&DYNUP

IORBFI=2 ,

(orbit 2 dynamics variables)

&END

& DYNSEC

(orbit 2 dynamics variables)

&END

<)RB[NP

_OI_B I N

IELEM=I, [CORD-2, ICENT=I,

ELEbI=810210., 53000.,

PROPM='ANALYT',H=I00.,IPOPT=2,

ISTOP=I,998,1,

_TPVAL=810220.,180000.,3600.,

ll<EP'f=0,0,i000,

1'rE_vi=l,

PARM='COMPLM',

IPARMS=I2,0,0,7,8, @

NOUT=3,

IDYN=2,

&END

LABEL A

ORBI'r

*NPLOT,I,I_,I,II

&VALUE

D=_l*0,

&END

PREPLT

&PREPL @
INDEX=I, 8,9,

XN_ME= 'TIME '

&END

Q
'DELA' 'DELE'

t I _ f @

ExDlanat ion

Comparison end _ime

Comparison beqiF, time

(epoc n)

Comparison end eime

and time increment

size

Comparison quantity

numbers from

Table C-4 of User's

Guide

Initialize NPLOT

5-13

,i

Automatic Sequence

PLTDYN

&PLTDY

NYARRS=I ,

TITLE= 'SEMI-MAJOR AXIS DIFFERENCES' ,

XTfTLE='ELAPSED TIME (SECONDS) '

YTITLE='SEMI-MAJOR AXIS DIFFERENCES' ,

XARRAY= 'TIME' ,

YARRAY= 'DELA ' , (f_

IPLOT=I, IGRID=0,
&END

PLTDYN

&PL'rDY

N'C'Ab:lCj,, I ,

1.' l't'l,l.:_, ' I,,_'t.'l.;f'_'l'l_ 1,' ITY I) [I."I"I';I(ENCI:I5 ' ,

×'l'I't'l.,E'-, ri,_7/_f;:--;I,:t:,T l:t,_J,: (Sl,:¢ 'c,Nr);-;) ',
Y'_.'I.'l'Lr_:---' b E-L'i.'A-_-!r
XAIiRAY= ''t'IME' ,

Y A_RAY= 'DELE ',

IPLUT=I ,I--G_D= 0 ,

&END

IF(_TATEI(2) .NE.I) GO TO A
EOF

Explanation

DELA plot G

DELE plot

'fne following polnts should be noted concerning this auto-

matic sequence:

• First, the PARMS, TIME, DELA, and DELE arrays are

allocatea. The PARMS array is used to pass comparison

values from the orbit propagator utility, ORBIT. TIME,

DELA, and DELE are one-dimensional arrays that are used in

the plotting utility (PLTDYN).

• The DYNUPD, ORBINP, and ORBIT utilities tna_ follow

the _ynamic array allocation cards ar._ called to create an

O_IT File over the comparison incer'/ai. Ti_e var£a:_Le

values for the creation of an ORBIT File are aiscussed in

Section 5.2. IDEL unaer NAMELIST ORBIN is set cc i, which

wili cause tne propagator to De deleted from core after the

f_e has oeen created. This is important, especlally if the

user is comparing orbits using different propagator3.

4 _

5-14

• The DYNUPD utility must be called to set up the dy-
namics for tne second orbit and to set IORBFI=2 since the

user does not wish to create an ORBIT Fi re on the next ca[[

to %he ORBIT u_li_y.

• ORBINP as calle_ to input the elements and propaga-

tor assoclateu with the second orbit. The stopping condi-

tlons are set to stop perlodicaliy (in this case, every

3600 n,_conds; until the end of tl_c com[_.:l_ i_orl :!;[).in. :4_-

iected parameter differences will be calculated and stored

ac each stop to be graphed later in the automatic sequence.

Section C.i.5 of the User's Guide describes the other non-

standard input through NAMELIST ORBIN.

• LABEL A is used in the looping procedure.

• The ORBIT utility is called to propagate the orbit,

stopping every 3600 seconds. ORBIT will continue until

elther the PALMS array is full or the orbit propagation has

reached the end of the comparison interval.

• Dynamlc array NPLOT must _e initialized before the

call is maae to the PREPLT utility.

• PREPLT is called to transfer the in£ormation _rom

the PARMS array into tne one-dimensional arrays TIME, DELA,

ana DEI,E, wnicn were allocatea at the be,finning o_ the atlt_-

li|d%ic :;equence. _ection 2.4 of th_ Software Resources docu-

taunt _]escribes PREPLT.

• PLTDYN is called to generate the aesired comparison

plots. This utility must be called once for each parameter

being compared. Section 5.3.9 of the User's Guide Jescribes

PLTDYN.

• If the orblt propagator s_ops only because t e

PALMS array is full, it will set STATEI(2>=2. If =he rbit

$-15

propagator hits a terminal stopping conaicion (end of the

comparison span), it will set STATEI(2)=I. If the latter is

the case, the run will end. Otherwise, processing will con-

cinue at LABEL A. The PARMSarray will be reinitialized,

and the orbit propagator utility, ORBIT, will be called
l,lain to continue pr,)pa,latin,t.

_"LglJ[q'S ")-] an, i 5-4 :_how _(]In_, _)# tit,_' [)r itltud ,)llt'[]ut [£:]i.11 t--

ing from a run made using the automatic sequence format de-

scribed above. This run compares the orbital parameters

generated using a time-regularized Cowell propagator With

drag as a aynamic effect with the parameters generated using

an anaiyc_c propagator without drag as a dynamic effect. In

t_,is particular example, the PARMS array fills up six times,

onus creating six comparison graphs of eacn of the two pa-

rameters compared. Figures 5-3 snows the first GMAS compar-

ison results table; Figure 5-4 snows the corresponding

semima3or comparison graph. Section 9.6 (Case 6) of the

User's Guiae ant Section 2.4.4 of the Software Resources

Cocument provide other examples of parameter comparison.

5.4 MONTE CARLO ANALYSIS

"l'lln M_nt_ Car1,_ Pr_,lr.lm dr[v,,r, M(_NI)I(V, f_r._vi_t,,'_ t:l_,, ,l:_,,l

wttn a generalized Monte Carlo error analysis capability

that can De applied to any user-defined funtion. In Monte

Carlo analysis, the function is evaluated (sampled) a large

numoer of times, with each sample being supplied a set of

control (inaependent) parameters whose values are the nomi-

nal values plus perturbed values obtained from a set of ran-

dom numbers. The output (dependent) parameters of the

£unction provide the raw data for the statistical and prooa-

oiIistic analysis. Figure 5-5 shows the general flow of =he

Monte Carlo Program along with the input variables connec-_ed

w1_n each stage of cne processing.
_J

5-16

I

I

i

I

I.
i

.:1

I

QI

%14.
O!

_1 !.I

I
I

ii...............................:.....................................i_

=t
&l

4!

I

I
t_

I

l -

I
6 4'
t

:i

!
I

t

B

• o :

0

.,-I

P-

0
r

LN

.r-t

5-17

lu

<
O.

w,)
im
.I
-,i
U'l

4

3[
4,1

,,j

I..7
O000OO00000000000000000OO00000000000000000000

ooooooo40oooeoOoeeoeeoeoeeeooeooeooeooeoooeoe

O0000000000_O?O0000000.O0000000*O000.OO00_O0_

I-

d_
(:3,..,

0._1+

IUU

I qb o° • oil q) • • • O • • O0 • I+q_O o I O o O e O O ! e t e O o O o i o 0 _o o go e

I N"* I _1' I_1,,.*,.,* I _O.._P4.,_,I'.._,-*.*O_ I f". I ,.*.,*ol I _),.,,ION_P+O <3-.* _r_ll*') I N
I I I I i | I I I | I O I I -- I I I I I,,* ,-*

I I

• "._,_':._,_,':_._,2_.':_,':_.°.°.':-?._,__

OlOOoleoeoooeeeoelolooelooooololo_loeoolooole

_i -- Itltllilltllllltlllltlllllllllllllllllllll I

_Q

lll

_ • O00_o0000oO0000OOoO000_O00000000000oO0_O000_O
0<*_ I I I I II I I I I I I I I I I I I I I I I I

<l_A llllllllllllllllollllllllllllllllllllllllllll

--+t_1 IOOIOIIII+OO+IIIII+IO+O0111+++++O011012iIolwo

9_ i l l l * I l ' ' I ' I ' l * l I I i I , l l I ' l l

_Gd
_ll*l**l*l*.660**O*llOOeel_le61_Ollei*l..O.i.

N N N N N N_N

000000_00000000000000000000000000000000000000
ellOOOlltlOllllOOOllOOIllOIlOll_OOllOllo_eOe

0

r_

0

-,-.I

0

I
:,'.:

,,,j

.,-I

I-

_o0000o0000000_0000000o00_0o0o0_o00000000_0_
O0000oOoo000o_O_o000oo000o_ooOooOoO0_OOOO0000
OO000000_o00oO0_Oooooo0_ooo0oo000000oOOO0oo0o
_m_mmmmm_mm_m_m+mmmmmmmm+m_m+mmmmm_m_mmmmm

5-_-8

{8,'LO6L

z_3=

U3

, O__

< ,,,.z
_z

Q_cn

er-

oT TT
=I=I_

Z

r-t

.,.-t

>

.,-t

r_
Ca

0

E_

E

0

0

F_

0

I

---I

5-19

Section 5.1.2 of the User's Guide provides a complete de-

scrlp_ion of _he GMAS Mon_e Carlo usage and input. To use

the Monte Carlo analysis capability, the user should proceed

as Eollows:

I. Create a Monte Carlo automatic sequence. The form

of tne automatic sequence is as follows:

MONDRV

&MONDR

(Monte Carlo variables)

&END

PRFCON (or TARCON) User-defined function

(utilities_

EOF

MONURV must De useG instead of DRIVEl and must be followed

oy the Monte Carlo inpllt variables tinder NAMELIST MONDAY.

't'ilellser-uerlned function, willch i_s _ncLuded n_xt, inu:]t _,:-

gin with a controller (either PRFCON or TARCON). The user-

Gerine_ "functlon" is actually a partlal automatic sequence

tnat uses values from aynamic array UM (independent vari-

aules) to produce depenuent values that are stored in dy-

namic array DEPVLM.

2. Determine the values of the variables under

NAMELIST MONDR and include them in the automatic sequence.

Table 5-2 presents a categorical list of the Monte Carlo

variables and a brief description of each. In this list,

the variables underlined are those usually required in a

Monte Carlo run. Appendix A of the User's Guide provides a

complete list of Monte Carlo variaoles that includes dimen-

sion, type, and default values.

3. Develop the user-defined function. First, define

the function to be usea by placing the appropriate con-

troller, executive utillty, an= utility load module calls in

the aucomatlc sequence following NAMELIST MONDR. (User-

suppllea u_zlities may al_o be used. Section _ of this

5-_

Table 5-2. Monte Carlo Program Variables

VARIABLE I DESCRIPTION

NOMINAL VALUES

NINDV NUMBER OF INDEPENDENT VARIABLES

NOMINAL VALUES OF INDEPENDENT VARIABLESUNOM

RANDOM PERTURBATION PARAMETERS

COVIN

ICOR IN

IDIST

SEED

SIGMA

COVARIANCEMATRIX FOR INDEPENDENT VARIABLES (SET ICORIN-1)

FLAG TO INDICATE WHETHER INDEPENnENTVARIABI ES ARE CORRL'-LATED:
- 0, UN(;ORREI.ATED (DEFAULT) (SIGMA USED)

- 1, CORRELATED (COVIN USED)

DISTRIBUTION FOR ITH IDEPENDENT VARIABLE

SEED OF THE RANDOM NUMBER GENERATOR

o VALUES FOR INDEPENDENTVARIABLES IF THEY ARE UNCORRELATED

DEPENDENT VARIABLES

LOWER AND UPPER TOLERANCES FOR EACH DEPENDENT VARIABLE

FLAG TO SELECT DEPENDENT VARIABLE CALCULATION METHOD

NUMBER OF DEPENDENT VARIABLES

DEPENDENT VAR IABLE STATISTICS OUTPUT

DEPTL

IDEPVL

NDEPV

HSTGRM

IHIST

ICOV

IDEB

ISMPLP

ITOL

NPRNT

TITLE

NUMBER OF HISTOGRAM BREAK POINTS AND HISTOGRAM VALUES FOR EACH
DEPENDENT VARIABLE (SET IHtST_0)

FLAG TO REQUEST HISTOGRAM OUTPUT

COVARIANCE MATR IX OUTPUT

DEBUG OUTPUT

PRINT MONTE CARLO RANDOM NUMBERS

PRINT TOLERANCE INFORMATION

PRINT FREQUENCY

DATA BASE TITLE TO BE PRINTED AT TOP OF EACH PAGE

GENERAL VAR IABLES

NMCS

INITM

NUMBER OF MONTE CARLO SAMPLES

INITIALIZATION FLAG FOR INDEPENDENT VARIABLES

=..

5-21

cocument provides the information necessary for creating

utilities.) Then provide for interfacing the dynamic arrays

UM and DEPVLM (see Table A-2 of the User's Guide) with the

user-aefined function. This can be accomplished by (a) mak-

ing tne inpu_ ana output variables in the user-defined func-

tion aynamic arrays, thus enabling the use of utility DSTORE

(see Section 5.3.2 of the User's Guide) to transfer the data

between UM ana DEPVLM and the user-defined dynamic arrays,

or (b) using the executive service routines FECHDA and

'£ORDA (see Appendix E o the User's Guide) from within the

runctlon to access and store UM and DEPVLM airectiy, in

general, methoa a provides more flexibility than methoa b.

Wi_n method a, the problem can be changed via user input;

method b requires a coding change to alter the problem setup.

Section 9.10 (Case I0) of the User's Guide proviaes a proo-

lem example of the use of the GMAS Monte Carlo error analy-

sis capaDili_y.

5.5 TARGETING AND OPTIMIZATION

The targeting and optimization controller, TARCON, provides

the user witn a numerical targeting and optimization capa-

oility tha_ can be applied _o any user-defined function

composed of a series of utilities. The GMAS targeting ana

optlmization capability can De used in the selection of cer-

tain mission control parameters (e.g., _X, aY, aZ) to sat-

isfy mission constralnts (e.g., raise perigee height while

maintaining tne argument of perigee) while optimizing some

mlsslon oo3ectlve (e.g., minimize the magnitude of _ne 4V

vector). TARCON varies the control parameters until _he

constraints are satisfied to within their tolerances and the

optimization variable is minimized (or maximized).

5-22

Figure 5-6 s_ecifies _ne primary variables used in the tar-

geting and optimization process. The ob3ect in targeting

and optimizatlon is to search through all possible values of

the control parameters (U) to find the set of parameters

that, when processed by the user-defined function to produce

tne target variable DEPVL, will give the desired target

values (DEPVAL) within their tolerances (DEPTL) while cpti-
m_zing the optimization variaole (OPTVL) .

%'0 use the GMAS targeting and optimization capability, the
user should proceed as follows:

i. Create a targeting and optimization automatic se-

quence. "'_,_=form of the automatic sequence is _ f,Jllows:

D_IVEI
TARCON

&TARGC
(targeting and optimization variables)

&END
(user-defined function)

EOF

It is to be no_ed that DRIVEl is followed by the targeting

and optimization controller (TARCON) instead of PRFCON.

2. Determlne the values of the variables under

NAMELIST TARGC and include them in the automatic sequence.

Table 5-3 presents a categorical list of some of the target-

ing and optimization variables that are frequently used. in
this llst, _ne varlables underlined are those which must be

included in any targeting run. Appendix B of the Use['s

Guide provides a complete list of targeting and optimization
variaoles.

3. Develop the user-defined function to be targeted.

First, define the function to De used by placing the appro-

pria=e u=ility load module and execu=ive utility calls in

_ne automatic sequence following [_AMELIST TARGC. The enc of

%he user-deflned function is tndicated oy a driver or

5-23

t2_

O- i...
(..OZ

z_

<<=>I
_'Z
..4,,i
0 e-,

k.-_l

[8/L06/.

a. Q,.
Lg t.M

0

= _ z

0 Q
uJ __

0

= = a-1

w 0

J,tT
I I I

u,.I k-

41 ,_

..Q

.,-I

>

0
-,-i

E

4J

0

,._

>.,

E
.,"4

I

©

.,-I

5-24

O4

q._
o

,--t

,,q
r_

-,...i

n3
>

0

N

E

©

,-el

n3

-,-,i

q3

o

,,-i

_J

I
L"3

,lJ

Z
0

I-.
Q.

Z
o
O'3

Z
t4,,I

0

•_ n- -_. ,r =:

,,, >

>

TelLO6L

_3
_ < l--
u. > Z

I-- u.J LU _

uJ _ _ LU _u

r_

0 " k- .T. <

_'z z _-__ _u --

_ u_
Lu I--

-- LU. -- Z

r_ _ _ >. u.J

_.

O _ < "' Z o.-- UJ

t.- 3: t-- O

L_ ._ _ -- _: 0¢n m = O ¢J Z

_u > Zc _ _u _uu _ _ LU ...I_

Z -- UU _ ,

ua Z ,_ ua o,,,_o _. _" =-

0 u.._.U.,I,,, =. _== =. =,,,: 8 -"'_ I_ u_ r:,-
w - "' 0 ¢:_o. =o ,.u'"'"_

_- 0 --" _- O_z ,.u ,-_i>'-.
- _-_ _" -_<< F- _'"<"

_ _.._ _ .

_.9...nF._no , _<

U.I "_
- 0 0 <_0= _a"I ill "_ -, .T. ._uu_

Q

¢0 O0

•.. e¢ _ =_ :_

Z _ ,,'n :.u

5-25

[glLO6L

A

t_
0

("4

q)
,-4

.,..q
r_

.,-I

>

0
.,'4

.,'4

.,-I

0.,
0

"0

t_

.,.4
.1.1
13
ty_

o'1

t3'

I

0

t

o

<

o

N Z
- 0

Q

i = -
_ _ 0 _Z

N _ _ _ _-- _0

o _o

_4=<< _< o_ _-=_

l.U

>.
I-

z
o

uJ

m

J4

z

I-

U3 a=

U

5-26

con%ro±ler call or Dy an end-of-file inaicator. Then Dro-

vlae for inter_acing _ne dynamic arrays U, DEPVL, anG OPTVL

wltn tne user-ae_ined function. This can oe accomplished oy

(a) making the input ana output variables in _ne user-

_efinea _unc_lon dynamic arrays, thus enabling the use of

u_iiity DSTORE (see Section 5.3.2 of the User's Guide) to

transfer tne aata between U, DEPVL, and OPTVL and the user-

aefined dynamic arrays, or (b) using the executive service

routines FECHDA and STORDA (see Appendix E) from within the

function to access and store U, DEPVL, and OPTVL directly.

In general, method a provides more flexibility than method b.

With method a, the problem can be changed via user input;

h b r=_res a _ . tup

This subsection is intended to introduce the user to the

basic operation of the GMAS targeting and optimization caoa-

bili_les. For a more comprehensive explanation of TARCON

an_ examples, the reader is referred to the following

sources:

Subject

TARCON Controller (aescrlption)

T_ec_n_ ana optimlzasion

mathematics (description)

NAMELIST TARGC input (de-

scription)

Optimizatlon of a second-

degree polynomial with

linear constraints (example)

Impulsive maneuver targeting,

fixed time (example)

Impulsive maneuver targeting,

variable _ime (example)

Reference

User's Guide, Section 5.2.2

Oser_s Guide, Appenalx S

User's Guide, Appendix B

User's Guide, Section 9.11

(Case ii)

Software Resources document,

Section 3.1

So£tware Resources document,

Section 3.2

5-27

5.6 AVERAGED ORBIT PRCPAGATION

The averaged orbit propagator, AVGVOP, is a rapid orbit gen-

erator, designed for moderately accurate and efficient com-

putation of the long-term motion of artificial satellites.

By averaging out short-term periodic effects, AVGVOP is able

to take much larger steps than its numerical counterparts

(e.g., Cowell takes 100 steps per revolution; AVGVOP takes

1 step per revolution). It does not, however, suffer from

the imprecision associated with purely analytic propaga-

tors. Because of its great efficiency, AVGVOP provides a

valuable mission analysis tool for studies involving long-

term effects of satellite parameters.

To run the averaged orbit propagator, the user can apply the

procedure for propagating orbits discussed in Section 3 of

this document, noting the following:

• PROPM must be set to 'AVGVOP'.

• Input elements must be averaged elements. Averaged

elements can be obtained by using the averaged

element conversion utility, AVECON.

• Averaged elements must be created using the same

force model as the propagator will be using.

• The step size, H, should be approximately one sat-

ellite period (in seconds).

Since the creation of averaged (mean) elements requires a

good deal of utility manipulation in the automatic sequence,

an automatic sequence, MEANEL, has been created expressly

for the purpose of calculating mean elements. By making

suitable changes to the GMAS input deck (see Figure 2-1),

this automatic sequence can be brought into GMAS from a

library of preexisting automatic sequences and updated to

satisfy the user's specific requirements. The GMAS

5-13

automatic sequence library and updating procedures are

mentioned in Section 7 of this document. Section 3.3 of

User's Guide provides a complete discussion of GMAS auto-

matic sequence card updates.

An automatic sequence, AVEGEN, has been created to convert

the user's osculating elements to mean elements and then

propagate these mean elements to a desired stopping condi-

tion. A thorough description of the use of AVEGEN can be

found in Section 3.6 of the GMAS Software Resources docu-

ment. One drawback to using AVEGEN is that the user cannot

specify the epoch time of the generated mean elements. If

the user wishes to fix the epoch time for the mean elements,

he should use the following method:

i. Follow the steps described in Section 3.5.3 of the

Software Resources document to create mean elements at the

desired epoch.

2. Add the following cards to the bottom of the auto-

matic sequence updates from step 1 in order to propagate the

mean elements that have been created:

Av_coN;!;ADD

ORBINP

&ORBIN

PROPM='AVGVOP',IELEM=0,

H=(step size) ,

IDYN=2 ,

(other orbital input stopping conditions)

&END

ORBIT

EOFADD

Section 3.5.5 of the Software Resources document provides a

sample case using MEANEL.

5-29

The total deck setup for the creation

MEANELand the subsequent propagating

given below along with comments.

of mean elements using
of these elements is

Input Cards Explanauion

//ZBNAMAVG JOB...

//*FORMAT PR,...

/'/*FORMAT PU, • . •

// EXEC GMAS,_GION.GO=375K

//FTI2F001 DD DSN=&&ORBFIL,UNIT=(DISK,3) ,

// DISP= (NEW, PASS) ,DCB= (RECFM=VS, LRECL= 1096,

// BLKSIZE=II00,BUFNO=2) ,SPACE= (CYL, (5,5) ,RLSE)

//GO.DATA5 DD *

&CONTRL IFTUBE=50,IFTABL=49,IFTPRT=9,&END

&GMASEX SEQNAM='MEANEL',IUPDAT=I,IBATCH=I,&END

UPDATES

DYNUPD,1,UPD

&DYNUP

(variable)

&END

&DYNSEC

(variables)

&END

EOFUPD

ORBINP,I,UPD

&ORB[N

(vat iaDles)

&END

_OFUPD

DYNUPD,2,UPD
&DYNUP

(variables)

&END

&DYNSEC

&END

EOFUPD

Alloca_e

orbit file

space (see
Sec-

tion 5.2)

use pre-

existing

MEANEL se-

quence and

update

Input
force model

Input ini-

tial :;rate

and s Lop-

ping condi-
t iON _Or

first prop-

agation

Input force

model again
and set

start and

end times

of oroit

file

5-30

Input Cards

ORBINP,2,UPD

&ORBIN

(variables)

&END

EOFUPD

ORBINP,3,UPD

&ORBIN

(variables)

& END

EOFUPD

AVECON,I,UPD

&AVECO

(variables)

&END

EOFUPD

AVECON,I,ADD

ORBINP

&ORBIN

(variables)

&END

ORBIT

EOFADD

Explanation

Set stcn ttre for secend

?ropagatien

Set epoch for mean elements

Set number ef periods to be

averaaed over

Propagate mean elements using

AVGVCP. Input stopping coDdi-

tions. Set IDYN=2 for dynamics

5-31

• _ _,_ •: _ _i¸il ,j,! _ _

SECTION 6 - CREATION OF GMAS MODULES

Thus far in this primer, only utilities from the operational

GMAS utility library have been used in automatic sequences.

The real power of GMAS is that users can develop their own

utilities. These utilities can be stored in libraries and

used in user-defined automatic sequences, thereby enabling

the user to string utilities together in any desired con-

figuration.

This section demonstrates how the user can integrate his own

software with the existing GMAS software through the use of

the automatic sequence to solve mission-specific problems.

Topics discussed include the creation and use of utilities

(Section 6.1), the modification of existing utilities (Sec-

tion 6.2), the creation of special output parameter modules

(Section 6.3), the creation of parameter modules in general

(Section 6.4), and the use o_ GMAS service routines in user

load modules (Section 6.5). Since utilities are created

from FORTRAN routines, the reader is assumed to be familiar

with the IBM FORTRAN IV programming language.

6.1 CREATION OF UTILITIES

This section discusses the various aspects of converting a

program or routine into a utility and using it in an auto-

matic sequence. Utility input is usually through NAMELISTs

or dynamic arrays. Output is usually printed out (using the

FORTRAN WRITE statement) or placed in dynamic arrays. This

section uses a series of examples to describe the process of

creating and using a utility. The first example (Sec-

tion 6.1.1) uses the most simple forms of input _d output;

subsequent examples (Sections 6.1.2 through 6.1. use more

complicated input/output methods. The actual f ctionsz_ per-

formed Dy the routines in the examples are kept simple for

demonstration purposes. The first three example_ involve

6-1

averaging four numbers. Tne fourth example involves taking

the sum of three numbers.

Before studying the examples, the reader should understand"

the general process involved in converting a subroutine or

collection of subroutines into a utility to be used in an

automatic sequence. Figure 6-I helps to illustrate this

process. A special program developed for GMAS, UTLBLD, uses

the user's FORTRAN subroutines (source) to build a utility

(AVGUTL). It then stores the utility in a user library

(ZBXXX.MYFILE.LOAD) on a disk (DISKXX).

The user procedure is as follows:

i. Determine the input/output requirements of the

FORTRAN program that is to be converted to a utility. Sec-

tlons 6.1.1 through 6.1.4 each present a different method of

input/output. The user's program can utilize any one or any

comoination of these methods.

2. Write a FORTRAN program for use in creating the de-

sire_ utility. This FORTRAN program must be written in a

certain manner to make it compatible with GMAS software.

3. Collect the information necessary to create and

store the utility on disk. The types of information re-

quired are noted below, along with the specific example of

each usea in Figure 6-1:

Information item

Deck of cards consisting of FORTRAN

code for utility

Name of main subroutine in source

deck

Name of new utility

Name ot liorary in whicn ut'_ity is
to oe storea

Name of aisk on which lib_ar

resides

Example in Figure 6-i

FORTRAN source deck

AVRAGE

AVGUTL

ZBXXX.MYFILE.LOAD

DISKXX

j/

b-2

\ \

.J
U
.J

L

i l

c_

co

81L06 L

.J

ffl

i

0

.1

ft.
I-

[
I

re

gl

W

Z

0
el,.
2ll

\

/ 4_
o r'i

,-.I
.,-t

.,-'4

,--I

J

o,-I

,'-3

i

4. Create a deck that will both build a utility con-

taining this program and store the utility in the user's

library.

5. Submit the deck created in step 4.

Steps I and 5 require no further explanation. Steps 2, 3,

and 4 are discussed in detail in the following sections.

6.1.1 EXAMPLE i: UTILITY WITH NAMELIST INPUT

6.1.1.1 Creating the Utility

The objective in this example is to create _ utility named

AVGUTL that reads in four R*8 numbers throuqh NAMEI.[ST in-

put, calcui_tes their average, and p[[nts out both the four

numbers and their average. The steps necessary to accom-

plish this are described below.

6.1.I.i.i Writing the FORTRAN Program

The following FORTRAN program can be used to meet the objec-

tive in this example:

col. 7

÷

SUBROUTINEAVRAGE F N: ERRI @
IMPLICIT REAL* 8 (A-_,_- _ ; _kS/

NAMELIST/AVGUT/A __

DI NSION A(41
READ(IFRN,AVGUT) _)

SUM=0.0

DO 100 I_i,4

SUM-SUM+A(I)

100 CONTINUE

AVG=SUM/4.0

WRITE(6,900) (A(I),I=I,4),AVG

900 FORMAT('IT_[E AVERAGE OF ',4GI0.2,' IS ',GI0.2)
RETURN

END

6-4

'2he toilowlng ru±_s muss be aanerea to wnen creating a new

program or converting an existing program to a GMAS uti!itv:

• The main routine must be written as a subroutine

with an argument list containing IFRN and IERR

• IFRN is _he FORTRAN reference numoer of the execu-

tive file. This is the file that contains the

user's NA_ELIST input. IERR is used as an error

flag. The user can set this flag to a nonzero

value In his appi_cation program (utility) ii ,in

error occurs. When control is returned to the GMAS

executive, t,le normal GMAS error procedure will De

followea. ('See O in the FORTRAN program pre-

sented aDove).

• Since all GMAS routines use aouDle-precision vari-

aoies, the user should incluae the IMPLICIT state-

ment (G) in oraer to maintain system integrity/.

• If input to the main routine is Dy NA_IELIST under

the utility card in the automatic sequence, the

main routine Should include the following cards:

- NA_IELIST statement (_)--The qeneral format

of the NAMELIST statement is

NAMELIST/X/a l,a 2,a 3,a 4,---,a n

where X is the NAMELIST name, and al,a2,

a3,...,a n are the variables or arrays in

_ne NAMELIST.

s_atemen_ (_) for any arrays inDIMENSION

the NAMELIST--The NAMELIST and DIMENSION

sta_emen_.s must occur oefore the first line of

executable code.

- READ statement ([5_) to reaa the NAMELIST i _

put from _he automatic sequence fiie (ZORTRA_i

reierence numoer = IFRN)

6-:.

The main routine code must be followed by a RETURN

statement (O) •

No routine or subroutine in a GMASutility should
include a STOP statement. The execution of a STOP

statement will terminate GMASexecution.

o.L.i.L.i ColLecting the Nece:_._,_r,/ [nloL'matL,)rl

['_e _n_ormatlon necessary to create and store the desired
utiLlty iS uS £ollows:

Information Item

Deck of cards consisting of FORTRAN

code for utility

Name o_ main suDroutlne in source

deck

Name of new utility

Name of library in which utility
is to De stored

Name of disk on which library re-
sides

Specific

FORTRAN source deck

AVRAGE

AVGUTL

ZBXXX.MYFILE.LOAD

DISKXX

b.l.l.l.3 Creating the Input Deck

The input card deck presented below can oe used to build the

uesired utility, underlined i_ems indicate information chat

must De supplied by the user.

col. l

//ZBXXXAVG JOB...

//*FORMAT...

/ / * FO:_AT...

// EXEC UTLBLD

//PR_P.DATA5 DD *

&UTIL

UTLNAM= 'AVGUTL ' ,

P RGN_M: 'AVRAGE ', ®
&END

FPARM XREF 0
/'�SOURCE. FORTIN DD *

(pro@ram cards (source code))

/*
©

J

J

//LINK.SYSLMOD DD DSN=ZBXXX.MYFILE LOAD,UNIT=DISK,
J! VOL=SEa=DISKXX T___07[lII,DZSP=(NEW,CATLGI

@ @
The following points should be noted:

• AVGUTL (G) is the name of the new u_.r_ utility.

(This is the name that will occur in the automatic

sequence.)

(Q) is tne name of the main user subrou-AVRAGE

tine in the program from i (Section 6.1.1.1.1).

• FPARM XREF (_) is an optional card. It causes

_ne FORTRAN compiler to generate a cross-reference

=nat is generally useful to the programmer.

• Tne converted program created in Section 6.1.i.i.!

must be included in this card deck at !l .

• ZBXXX.MYFILE.LOAD (_) is the name of the user

library in which the new utility is to be stored.

ZBXXX is tne user ID, MYFILE is a descriptive name

chosen by the user to identify his liorary, and

LOAD is a suffix that is always used when buildin G

utilities.

• DISKXX (_) is the ID of the disk on which the

library is to be created.

• SPACE=(TRK,(20,,I)) (G) tells tne amount of

space on the disk that is to De reserved for _he

user's library. In tnis case, 20 tracks are to be

used. The size of the user's liorary will vary

depending on the number an_ size of utiii_ies in it.

In %nls example a user library is created. If %ne user li-

orary already exists, the following LINK.SYS_.!< " card should

be used:

, LINK.SYSL_OD DD _SN-ZBXXX.MYFILE.LOAD,D[J[;= DLD,KEEP)

6-7

where ZBXXX.MYFILE.LOAD is the name of the existing li0rary

tcreaced on a previous run), an_ %_e =i_=%==n car_,

DISP=(OLD,KE_P), _n0_cates %nat the L_)[ary already ex_t:_

anu SL_OUld oe Kept on file a£_er execution.

b.£.£.I Usin_ the Ut£1ity in a GMAS Automatic Sequence

To use the utility in an automatic sequence, the user must

submit tne deck presented below. Underlined items indicate

_ne changes in the standard input (Figure 2-1) necessary

when using utilities other than GMAS utilities.

col. 1

//Z_XXXTST JOB...

//*FOR_T...

//*FORMAT...

// EXEC GMAS,REGION.GO=300K

//STEPLIB DD DSN=ZBXXX.MYFILE.

//GO.DATA5 DD *

LO_D,DISP=SHR

&CONTRL IFTUBE=50,IFTABL=49,IFTPRT=9,&END

&G_IASEX SEQNAM='CARDS',IBATCH=I,NEWUT=I,UTNAME='AVGUTL',&END _
DRIVEl

PRFCON

AVGUTL
& A VG UT

a-70 . ,80 . ,_0 . ,1O0. ,

&END

EuF

/*

//

@

The following points should be noted:

• Since this utility is very small, it will not

require the 375K bytes o£ core normally required for an

orbit propagation. Insteaa, this case can be run in 300K

• The STEPLIB card (_) must be included when the

user is including his own utilities in the automatic se-

quence. ZBXXX.MYFILE.LOAD is _he name of the user's !iorary

that contains the utility to be used in the automatic se-

quence.
j_

6-8

• Two variables must be added to the &GMASEX card

(_) . NEWUT=I _ndLcates that ._ne us,_[utL[_ty will !,e

Includea in tne automatic sequence. UTNAME='AVGUTL' speci-

fies the utility name. Up to i0 use[utilities can be used

in a run. For example, if three user utilities (UTI, UT2,

ana UT3) are used in an automatic sequence, the user sets

NEWUT=3,UTNAME='UTI','UT2','UT3',.

user utility name, AVGUTL (@), is incluaedThe

at tne proper point, and input is through NAMELIST AVGUT

(i_). The result of running this deck is the printed

average of the four numbers under &AVGUT (see Figure 6-2).

o.l.i EXAMPLE 2: UTILITY WITH DYNAMIC ARRAY INPUT/OUTPUT

USING ROUTINES COMPUT, FECHDA, AND STORDA

In GMAS, results from one utility can be stored in a dynamic

array and passea into another utility as input. This util-

ity can process the information and store the results in a

dynamic array, which can be passed in turn to another util-

ity as the process continues. Dynamic arrays can be passed

through the argument list (see Sections 6.1.3 and 6.1.4) o[,

as ShOwn in this example, by using GMAS system routines

6.1.2.1 Creatin 9 the Utility

The objective in this example is to create a utility named

AVGUTL that takes four R*8 numbers from dynamic array NUMBRS

ana puts their average in dynamic array AVERAG using rou-

tines COMPUT, FECHDA, and STORDA. The stgps necessary to

accomplish _nis are described below.

6.1.2.1.1 Writing the FORTRAN Program

The following FORTRAN program can ee used to meet the objec-

tlve _n this example:

col. 7

SUBROUTINE AVR_GE(IFRN,IERR)

6-9

-,t.

u)

_n

'-_ ,-4

E

w,

.D
0

cq
I

o

u.

J

6-10

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(4)
CALL COMPUT('NUMBRS',IADRI, 'AVERAG',IADR2)

IF (IADRI.EQ.0.OR.IADR2.EQ.0) GO TO 990
CALL FECHDA(A, IADRI,4)
SUM=0. 0
DO i00 I=1,4

SUM=SUM+A(I)
I00 CONTINUE

AVG=SUM/4.0
CALL STORDA(IADR2,AVG,I_
GO TO I000

990 CONTINUE

WRITE(6,9
995 FORMAT('I**ERROR NECESSARYARRAYS HAVE NOT BEEN

* ALLOCATED** ')
i000 RETURN

END

The following points should be noted:

Q The first three lines of code are the same as in

example I (3ection 6.1.l.l.l), ,__xcept the NAMELZST stanement

is not used since there is no NAMELIST inpuc in this case.

• GMAS executive service routine COMPUT is called to

compute the addresses of dynamic arrays NUMBRS and AVERAG

(_}. A call to COMPUT must precede calls to FECHDA or

STORDA since these routines require the addresses of the dy-

namlc arrays, which are calculated in COMPUT. (Appendix E

of the User's Guide provides a complete description of

COMPUT.) If a dynamic array is not allocated, its corre-

sponding address (in this case, IADRI or IADR2) is set t; 0

by COMPUT. If this occurs (Q) , execunion continues at

990, where the error flag is set to a nonzero nJmber !_)

and an error message is written (_). Since IERR=I, the

error will be captured by GMJ_S, thereby saving a pos3_bie

sysnem error.

FECHDA is called (_) to transfer the con_en=s of

aynamic array NUMB2S (at address _A_RI) to array A nin

_ne program. _Appendix E of the User's Guiee provi_e:_ a

complete aescripcion of FECHDA.)

6-11

• The average is computed just as it is in example 1

(Section 6.1.1.1.1). Routine STORDAis then called to
transfer the average from local variable AVG to dynamic

array AVERAG (at address IADR2). Execution continues at

1000, where the RETURNstatement is encountered.

6.1.2.1.2 Collecting the Necessary Information

The information necessary to create and store the utility in

this example is the same as that specified in example 1

(Section 6.1.1.1.2).

6.1.2.1.3 Creating the Input Deck

The input card deck to build the desired utility in thi_ ex-

ample is the same as that specified in example 1 (Sic-

tion 6.1.1.1.3).

6.1.2.2 Using the Utilit Y in a GMAS Automatic Sequence

To use this utility in an automatic sequence, the user can

submit the same card deck as specified in example 1 (Sec-

tion 6.1.1.2), except the automatic sequence must be as fol-

lows:

col. 1

V

DRIVEl

PRFCON

AVGUTL

*NUMBRS, A, R8, i, 4

&VALUE

D=70. ,80. ,90. , 100. ,

&END

* AVERAG, A, R8,1,1

PRTDYN

& PRTDY

NARRS- 2,

ARRNAM= 'NUMBRS ' , 'AVERAG ' ,

ARRTIT='NUMBERS ' , 'AVERAGE' ,

OUTFMT=' FI0.2 ' , 'FI0 .2' ,

&END

EOF

6-12

In this case dynamic arrays NUMBRSand AVERAG must be alio-

caced. NUMBRSwas initialized with tne numbers to be aver-

agea. After the AVGUTL utility has been executed, PRTDYN is

callea to print the values of the dynamic arrays. 'Fable D-6

of the User's Guiae provides a aescription of the NAMELIST

PRTDYN input variables.

Fzgure 6-3 snows example _ results.

0.i.3 EXAMPLE 3: UTILITY WITH DYNAMIC ARRAY INPUT/OUTPUT

USING THE SUBROUTINE ARGUMENT LiST

Example 2 (Section 6.1.2) presents a method for accessing

dynamic arrdys uslng executive routines COMPUT, FECHDA, and

STORDA. This example (example 3) illustrates another method

_or tcansferr_ng dynamic array in formatLon into the utzlicy.

6.1.3. I Creatin_ the Utility

The ob]ective in this example is to create a utility named

AVGUTL that takes four R*8 numbers from dynamic array NUMBRS

ana puts thezr average in dynamic array AVERAG using the

subroutine argument list. The steps necessary to accomplish

this are described below.

Tne tollowzng FORTRAN program can be usea to meet the objec-

tive in tnis example:

col. 7

SUBROUTINE AVRAGE(NUMBRS,AVERAG, IFRN,IERR)

IMPLICIT REAL*8(A-H,0-Z)

COMMON/DIMCOM/II,JIcKI,I_J2,K2DIMENSION NUMBRS(II,

SUM=0.0

DO i00 I=1,4

SUM=SUM+NUMBRS (I) 5_
100 CONTINUE

AVERAG=SUM/4 . 0 @
RETURN

END

@

6-13

&2

I

J

6-14

i ne ._o!±owing points should De noted:

• In this example, the dynamic arrays are passed

tnrougn the argument list (0). The format of the main

subroutine is as follows:

SUBROUTINE utility-main(DA I,DA 2,...,DA n,IFRN,IERR)

where DA[,...,DA n are the dynamic arrays needed by the

subroutlne. These aynamic arrays have been given dimensions

previously by their allocation cards in the automatic se-

quences. This dimension information is then passed into the

utility using COMMON block DIMCON (Q). Therefore, the

user can provide utilities that operate on dynamic arrays

WhOSe dlmensions can be aeL_[_mined in t_e automatic s_quence

during their allocation. For example, if the user desires a

utility that averages all of the numbers in a dynamic array

(of arbitrary length), this can be accomplished by simply

changing line _ to DO [00 [=l,II, and line _ to

AVR_G=SUM/II. T_is illustrates tne primary advantage in

using tne argument list method as opposed to the method used

in example 2.

• All three dimensions must be included in COMMON

Dlock DIMCOM for each dynamic array, even if the dynamic

array was allocatea in one dimension. In this example, the

values of If, Jl, KI, I2, J2, K2 will be 4, !, l, i, i, i,

respectively.

Page 7-i of the User's Guide provides a complete description

of passing dynamic arrays and _heir dimensions into a util-

ity.

6.1.3.1.2 Collecting the Necessary Information

Tne information necessary to create and store the utility in

this example is tne same as _._a= specifieQ _.n example 1

(_ecsion 6.i.i.i.2) .

6-15

6.1.3.1.3 Creating the Input Deck

The input card deck to build the desired utility in this

example is the same as that specified in example i (Sec-

tion 6.1.1.1.3), except it must include the variables

ARRNAM='NUMBRS','AVERAG', under NAMELIST UTIL to designate

the existence of dynamic arrays in the utility argument list.

6.1.3.2 Usin_ the Utility in a GMAS Automatic Sequence

The input deck setup and automatic sequence in this example

are identical to those specifie_i in example 2 (Sec-

tion 6.1.2.2). The results in both examples are also iden-

tical.

6.1.4 EXAMPLE 4: UTILITY WITH DYNAMIC ARRAY INPUT/OUTPUT

USING THE ARG CARD

In examples 2 and 3, the names of the input and output dy-

namic arrays are hard coded in the utility; input must come

through dynamic array NUMBRS, and output must be transferred

through dynamic array AVERAG. If, for instance, the user

wants to average the numbers in another four-element array

named NUM2 and put their average in an array named AVG2, he

cannot use the same utility (AVGUTL). This can present

quite a problem if the user has a number of four-element

arrays (NUMI,NU_I2,...,NUMN) from which he wants to obtain

averages (AVGI,AVG2,..,AVGN) in the same automatic se-

quence. To do this he either needs N different utilities or

must do a great deal of transferring of numbers frem one

array to another.

This problem can be solved using the ARG card. The ARG

card, which follows the utility card in an automatic se-

auence, is used to specify the input/output dynamic arrays

that are to be processed by the utility. For example, if

the user has a utility, UTIL, that uses the ARG card to find

the averaQe of numbers in a four-element array, t_e
J

6-16

A_<Gcard could be used as follows to accomplisn the required
task :

UTIL
ARG NUMI, AVGI
UTI L
AR% NUM2,AVGZ

U'IIL
ARG NUMN,AVGN

Example 4, presentea below, is provided to clarify the use
o_ the ARG cara.

o.i.4.1 Creating the Utility

The oojective in this example is to create a utilitv that

adds two dynamic variables and places their sum in a third

dynamic variable• All three of tnese dynamic variables are

co be passed through the argument list using the ARG card.

This utility is then to be used in an automatic sequence to

ada three dynamic variables by its successive execution.

qne steps necessary to accomplish this are described below.

_.i.4.i.i _ricing the FQ)_'I'RAN _rogram

fne following FORTRAN program can be used to meet the oo3ec-

cive zn tnis example:

col. 7

4'

SUBROUTINE DYNSUM (A, B__,SUM, IFRN,IERR)

IMPLICIT REAL*8(A-H,O-Z)

S U_I=A+B

RETU RN

END

fne following points should be noted:

• A ant B are the numbers to be input in the ucii_=v;

their sum will be output in the SUM posi-=on.

6- ' 7

• :_Lnce A, B, anu SUM _re scJLJrs, D_.MCOM does nor.

need co _e included.

• As usual, IFRN an_ li_RR must be included ac the end

of the argument list.

6.1.4.1.2 Collecting the Necessary Information

The information necessary Co create and store the utility in

this example is as follows:

Information Item Specific

Deck of cards consisting of FORTRAN FORTRAN source deck

code for utility

Name o_ main subroutines in source DYNSUM
deck

Name ot new utility SUMUTL

Name of library in which utility ZBXXX.MYFILE.LOAD
is Co De stored

L_ame o_ disk on which library DISKXX
resides

6.i._.I.3 Creating the Input Deck

'£he Inpu_ card deck co build tne oesired utility in this ex-

ample is tne same as that specified in example i (Sec-

tion 6.1.i.i.3), except UTLNAM='SUM[]q_[. ' and PBGNAM='DYNSUM'

6.1.4.2 Using the Utility in a GMAS Automatic Sequence

To use thls utility in an automatic sequence, the user can

enter the same card deck as specified in example I (Sec-

tion 6.1.1.2), except UTNAME='SUMUTL'. The automatic se-

quence used to add three dynamic variables using the SUMUTL

utility is as follows:

Automatic Sequence

DRIVEl

PRFCON

*;_,A, R_, l, l

&VALUE

0=5.,

&END

Explanation

Allocate an_ _n;tial-

ize dynamlc variables
J

6-18

Au%oma_ic Seauence

*Y,A,RS,I,I
&VALUE

D=I0.,
&END

*Z,A,RS,I,I
&VALUE

D=IS.,
&END

_UM,A,R8,1,1
SUMUTL
_RG X,Y,SUM
SUMTUL
ARG Z,SUM,SUM
PRTDYN

&PkTDY
NAR_S=4,
ARRNAM='X't'Y','Z','SUM',

,z,OUTFMT=4 _' 2'#

&END

EOF

Explanation

X + Y = SUM

Z + SUM = SUM

Print values of X,

Y, Z and their sum

Tne following points should be noted:

The SUMUTL utility card must be followed by an ARG

cara with three dynamic array names.

There must be a space between ARG and the first dy-

namic array.

Although the dynamic array names are not fixed, the

number and type of the dynamic arrays are not op-

tional.

Figure 6-4 snows example 4 resu!_s.

6.2 MODIFICATION OF EXISTING UTILITIES

It is often desirable to make moaiflcations to subroutines

In a preexisting utility. This can be accompiisned by using

%ne UTLBLD program discussed in Section 6.1. To modify a

preexisting module (for example, t_e u=ility module

6-19

c"

I

6-20

creaceu in example 1 (Section b.i.l)), tr,e user snould pro-

ceea as follows:

i. Collec_ the following information necessary to

modify %he preexisting module:

Information Item

Modifled subroutines or subroutines

Co De aaded

Name or utility to be moaified

Name of library containing utility
to be modified

Specific

AVRAGE

AVGUTL

ZBXXX.MYFILE.LOAD

2. Submit the deck specified below.

indicate user-supplied information.

Underlined items

col. I

//userid JOB...

//*FORMAT...

//*FORMAT...

// EXEC UTLBLD,REGION.PREP=50K

//PREP.DATA5 DD *

&UTIL

IOPT=I,

UTLNAM='AVGUTL' , Q
&END

F PAlM XREF

/"
//SOURCE. FOR_ IN DD *

(corrected subroutine)
/*

©

//LINK.SYSLIB DD DSN=ZBXXX.MYFILE.LOAD,DISP=SHR

//LINK.SYSLMOD DD DSN=ZBXXX.MYFILE.LOAD,DISP=(OLD,KEEP)

// EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=A

//INOUT5 DD DSN=ZBXXX.MYFILE.LOAD,DISP=(OLD,KEEP)

//SYSUT3 DD UNIT=DISK,SPACE=(TRK, (i))

//SYSUT4 DD UNIT=DISK,SPACE=(TRK, (i))

//SYSIN DD *

COPYOPER COPY OUTDD=INOUT5,INDD=INOUT5

/*
//

Q

6 -21

The following points should be noted:

• REGION.PREP=50K (_I_) must be included to avoid job

termination if the user is modifying an existing

utility.

IOPT=I (Q) is the switch that indicates that the

user is modifyinq an e×istinq utility.

• AVGUTL (Q) is the name of the utility to be modi-

fied.

• The corrected subroutine(s) should be inserted at

G.
• ZBXXX.MYFILE.LOAD (_) is the name of the user li-

brary that contains the utility to be modified.

• ZBXXX.MYFILE.LOAD (Q) is the name of the library

that will contain the new modified utility.

(Usually, the utility is put back in the same

library.)

• To avoid depletion of available space in the li-

brary, it is necessary to compress the library

after the modified utility has been added (_).

6.3 CREATION OF SPECIAL OUTPUT PARAMETER MODULES

Some mission-specific problems require output that cannot be

acquired using any of the standard GMAS output values

(NOUT=-3 through 3) or user-selected GMAS output values

(NOUT=4 through 6). The GMAS special output (SPOUT) capa-

bility is very effective in such cases. This capability

enables the user to write his own FORTRAN program (in which

SPOUT must be the main routine) to be incorporated with the

existing general parameter (GPARM) output module. The

user's program will then be called after the las_ line of

GPARM output (determined by NOUT). Various levels of oa-

rameters are available to the SPOUT ._outine through i-__

argument list.

6-22

To use the GMAS SPOUT capability, the user should oroceed as
follows :

• Write the SPOUT routine to be linked with the

existing GPARM output module•

• Use UTLBLD to create a special output parameter

module that incorporates the new SPOUT routine.

Section 6.3.1 discusses the two steps specified above. Sec-

tion 6.3.2 discusses using the newly created special output

parameter module in a GMAS automatic sequence•

6.3.1 CREATING THE SPOUT ROUTINE AND THE SPECIAL OUTPUT

PARAMETER MODULE

6.3.1.1 Writinq the SPOUT Routine

The user must write the SPOUT routine in the form specified

below. Underlined items indicate user-supplied information•

col. 7

+

SUBROUTINE SPOUT(POS,VEL,SF,OUTPRM,TIME,ITIME,IPARMS,

* NOUT,ITYPE,LNECNT,LEVEL,IERR) _
IMPLICIT REAL*8(A-H,O-Z)

DIMENSION POS(3),VEL(3),OUTPmM(55),TIME(4),ITIME(8) ,

* NOUT(3)

IF (LEVEL.EQ.0) GO TO 900 (_

(user's code)

LNECNT=LNECNT+n

900 CONTINUE

LEVEL=m
RETURN

END

®

The following points should be noted:

@ The argument list (_!)) contains a number of param-

eters that can be used in the user code. Some of the more

useful parameters are discussed below.

_-23

- OUTPRMis a 55-element array that is passed

through the argument list. OUTPRMcontains information in
the order specified in Table C-6c of the User's Guide (e.g.,
OUTPRM(2) = eccentricity).

- LNECNT is a variable that keeps a running

total of the number of lines printed out. It is used in

paginating the GMAS output parameter report. This variable

must be incremented in the SPOUT routine by the number of

printed lines produced in the routine (Q).

- LEVEL is a variable that must be set to I, 2,

or 3, depending on the level of information the user desires

passed through the OUTPRM array into the SPOUT routine. The

different levels and the corresponding IPARMS values (see

Table C-6c of the User's Guide) that will be computed are as

follows:

Level IPARMS Values

1 1-6

2 1-36

3 1-55

If, for example, the user needs the value of the spacecraft

spin axis (IPARMS=38), he sets LEVEL=3 to ensure that the

necessary computations will be carried out. The value of

the spacecraft spin axis is then located in OUTPRM(38). (If

the user were to set LEVEL=2, the OUTPRM(38) location might

contain a meaningless value.) If, for another example, the

user needs only eccentricity (OUTPRM(2)), he sets LEVEL=l.

- IERR is used as an error flag. If the user

desires to flag an error in his program (e.g., to avoid di-

vision by zero), he should include an error message (usina a

FORTRAN WRITE _tatement) and set IERR=I. This will result

in a GMAS error traceback printout.

6 -24

Tn_ IF test (2_J) must occur as the first execut-

amle line of coae in tne SPOUT routine. This is necessary
rot the proper interfacing of the SPOUT routine and the main

subroutine within the GPARMmodule. GPARMcalls SPOUT once

per orult propagatlon with LEVEL=0 to determine the propaga-
tion level of computation. On all other calls LEVEL is as

set Oy _ne user. The user can insert his code after the IF

test described above. His code can include his own subrou-

tines or GMAS service routines (see Section 6.5 of %his

document and Appendixes E and F of the User's Guide).

• After the user's coae LNECNT must De incremente_ Oy
the number of lines (n) that were printed as a result of his

coae (_).

(@) must be set after -heThe LEVEL indicator

900 label and before returning (m represents the level of

computation necessary to make certain propagated parameters

available in the t_UTPRMarray).

6.3.[.2 Creatlil_j the Special Output Parameter Module

To create a special output parameter module that incorpo-

rates the new SPOUT routine and stores it in the user's li-

brary, tne user must submit the card aecK specified below.

Unaerlinea items indicate user-supplied information.

col. 1

//useria JOB...

//* FORMAT...

//'*FORMAl'...

// EXEC UTLSLD,REGION.PREP=50K,PARM.LINK='MAP,LIST,LET,OVLY,

/'/PREP.DATA5 DD *

&UTIL

IOPT=I ,

UTLNAM= 'name ' , (i_

OLDUTL= ;G--_--P_M', OLDENT='_ IMPLS ' ,

&END

F PAR_M XREF

_-25

/,/SOURCE.FORTIN DD *

(SPOUT routine) O

//PREP.LINKIN DD DSN=GJMAS.OVERLAY.DATA(GPARM) ,

// DISP=SHR, LABEL= (, , ,IN)

//LINK.SYSLIB DD DSN=GJMAS.GO. LOAD,DISP=SHR

//LINK.SYSLMOD DD DSN=userid.filename. LOAD,UNIT=DISK,

// VOL=SER=DISKx___x, SPACE = (TRK, (20,, I)) ,DISP = (NEW, CATLG)

The user must include the name of the new output parameter

mouule (0), the SPOUT source code (see Section 6.3.1.1)

(_), and the names of the user's library (_)__ and the

iSK (_ ;.

6. 3.2 U_ING THE SPECIAL OUTPUT PARIhMETER MODULE IN A GMAS

,_UTOMAT IC SEQUENCE

TO inclu_e the special output parameter mo0ule in an auto-

matic sequence, tne user must submit a _Jec_ in the _ocm

speci£ie_ Delow. Underline_ items indicate user-supplie0

information.

col. i

Y

//userid JOB...

//*FORMAT...

//*FORMAT...

// EXEC GMAS,REGION.GO=400K

//STEPLIB DD DSN=userid.filename. LOAD,DISP=SHR

//GO.DATA5 DD *

&CONTRL IFTUBE=50,IFTABL=49,IFTPRT=9,&END

&GMASEX SEQNAM='CARDS',IBATCH=I,&END

DRIVEl

PRFCON

ORBINP

&ORBINP

(oroital input information)

PA_IM='name '
&END

ORBIT

EUF

®

.J

6-26

The following points should De noted:

• A STEPLIB card must De included with the name of

the user's library (see Section 6.3.1.2) . (_ and

Section 6.3.1.2) should 0e the(from same.;

• The automatic sequence can be written in the normal

fashion, except the user should substitute his

special output parameter module for the GPARMrood-

is done using variable PARMM. (0ule. This and

Q (from Section 6.3.1.2) be same.)should the

6.4 CREATION OF PARAMETER MODULES

In _ection 6.3, tne general parameter (GPARM) output module

is replacea by the user's special output module, which is

the same as GPARM except that it contains a user-defined

SPOUT routine that causes special user-defined output to be

printed at eacn stop after tne standard GMAS output.

MoGules such as this one are called parameter modules. Pa-

rameter moaules are like utilities in that they are se!_-

contalned programs (load modules) that can be built by using

the UTLBLD procedure. They differ from utilities in the

following ways:

• Parameter modules are not placed in the automatic

sequence. They are specified through variable

PARMM (PARMM='GPAP_M') in NAMELIST ORBIN.

• To use a new utility in an automatic sequence, the

user must include variables NEWUT and UTN_ME in

NAMELIST GMASEX. This is not necessary when using

a new parameter module.

• Input to utilities can be through NAMELIST vari-

aoles or dynamic arrays. Input to parameter mod-

ules is usually through a fixed argument list.

• _ne parameter moauie is executed each time the o-'-

Dlt propagator achieves a stopping condition.

6-27

in general, a parsmeter module shouia be usea insceaa of a

utility moaule i_ the user wanes to execute the module at

specific events during the propagation of a satellite or-
bit. However, a parameter module can be executed without

cne propagation o_ an order. This can oe accomplishea Dy
inclualng the variable value IPOPT=99 unaer NAMELIST ORBIN.

To create a parameter module from a suoroutine, existing
program, or logically connected group of subroutines, cne

user Should proceed as follows:

i. Convert the main routine to a subroutine.

2. Use UTLBLD to creat_ the new parameter module an_i

store it in %he user's library.

Section 6.4.1 discusses the two steps specified above. Sec-

tion 6.4.2 discusses using the parameter moaule in a GMAS
automatic sequence.

6.4.1 CONSTRUCTINGTHE PARAMETERMODULE

6.4.1.1 Constructing the Main Routine of the ParameCer
Mouule

To construct the main routine of a paramecer module, the

user must write the routine in the form specifiea oelow.

Unaerlinea items inaica_e user-suppliea information.

col. 7

Y

SUBROUTINE arp__.r_(STATEI,STATEF,PA_HS,NOUT, ITYPE, Q
IDYN,IPARMS,IERR)

IMPLICIT REAL*8(A-H, O-Z)

COMMON/DIMCOM/II,JI,KI,12,J2,K2,I3,J3,K3

DIMENSION STATEI(II),STATEF(I2),PARMS(I3,J3),NOUT(3) ,

IPARMS(10)

(user code)

RETURN

END

The _ollowing points should be noted:

• Entry param (Q) is the user-supplied name of the

main routine in 5he program that _s to De converted into a

parameter moaule. Parameter modules have a fixed argument

llst. STATEI, STATEF, and PARMS are dynamic arrays, and the

other variables are passea through the argument list (like

IFR_N ana IERR in the main routine of a utility; see Sec-

tion b.l.3). _ection 3.3.4.2.1 of the GMAS System Descrip-

tion provides a complete description o£ the variables in the

argument List.

• NOUT, IDYN, and IPARMS contain the values input

under NAMELIST ORBIN in the automatic sequence preceding the

ORBIT card. These variables are often dsed to pass info[ma-

tion into the parameter module. An example of this is

COMP_ (a parameter load module used to calculate various

parameter differences of two orbits), which uses nonstandard

values of the variables as input. (See Section C.2.5 of the

User's Guide.)

values :

ITYP is an inGicator flag having the _ollowing

Value Meanin 9

-I Initial entry to the parameter module

(before a call is made to the propagator)

Intermeaiate call to tne parameter

module (after a stopping condition

has 0een met)

Final call to the parameter module

If ITYP is set to 2 by tne user, ORBIT propagation is fermi-

hated.

• IERR is the error condition indicator. If an error

cccurs during the execution of the user's parameter moa._!e,

IERR Should De set to a nonzero valde.

6-29

6.4.1.2 Creatinq the Parameter Module

To create the new parameter module and store it in the

user's library, the user must submit a card deck in the form

specified below. Underlined items indicate user-supplied

information.

col. 1

/'/userid JOB...

//*FORMAT...

/ /'FOF_4AT. . .

// EXEC UTLBLD

//PREP.DATA5 DD *

&UTIL

ARRN_M= 'STATEI ' , 'STATEF' , 'PAR/_S ' ,

&END

FPARM XREF

/*
//SOURCE.FORTIN DD *

(source code)

/*
//LINK.SYSLMOD DD DNS=ZBXXX.MYFILE.LOAD,UNIT=D_%SK,

// VOL=SER=DISKx__x,SP---_-[_-K7 [20, ,I)) ,

// DISP=(NEW,CATLG)

Q

The following points should be noted:

• PRMOUT (_) is the user's parameter module name

(the user se_s PARM='PRMOUT' in NAMELIST ORBIN).

• Entry parm (Q) is the name of the main routine in

%ne FORTRAN program (see Section 6.4.1). [_) and

should be _ne same.)

• _ IS the name of the user's library, and _ is

the disk on wnic_ it will reside.

6.4.2 USING THE PARAMETER MODULE IN A GMIS AUTC_TIC

SEQUENCE

To use the new parameter module in an automatic sequence,

zne user must proceed as specified in Section 6.3.-.

6-30

o.4.3 MISCELLANEOUS ASPECTS OF USER MODULECReAtION

'£ne fo±iowing points snoulo oe noted concerning cne creation
of user modules:

• The UTLBLD deck setups given in this section and

Sectlon 6.3 are to be used if the user is creating a li-

brary. It a library already exists, or if the user wants to

update an existing parameter module or special output rou-

tine, he snoulo use the metno0 descrioed in Section 6.2 ano

refer to Section 7 of the User's Guide. If the user's li-

brary contains only one utility or parameter module, it may

be easier to delete the entire library and start over

again. This can De accomplished by puttinq the [o!!owing

two cards after the //*FORMAT cards in the UTLBLD deci<:

col. i

// EXEC PGM=IEFBRI4

//DELETE DD DSN=ZBxxx.MYFILE.LOAD,DISP=(OLD,DELETE}

where ZBxxx. MYFILE.LOAD is the library file to be deleted.

• Tne user can also modify or creaze propagators.

ducn modules, called propagator modules, are specified

through variable PROPM (PROPM='TRCOWL ') in N_ELIST OKBIN.

The building and use of propagator modules is similar to

that of parameter modules, except tne propagator module main

suDroutine has a different argumenc list than the paramete[

mooule main subroutine.

6.5 USE OF GMAS SERVICE ROUTINES IN USER LOAD MODULES

A number of G_S service routines can De called from a user

FORTRAN program tha_ is to become a utility or a parameter

mooule. Most service routines can De classifiec into the

following cacegories:

• Dynamic array handling routines

• Ceord_nace and eie_en_ conversion routines

,] - .) _

Matrix and vector manipulation routines

Time and date conversion routines

Other service routines compute the state transition matrix

(TRANMX), compute the partials of the Keplerian elements

with respect to the Cartesian elements (KPART), and perform

many other useful services. Appendixes E and F of the

User's Guide provide a complete categorized list of all

availaDle service routines.

The use of service routines is illustrated in the following

example. The objective in this case is to write a FORTRAN

program co De convertea into a GMAS utility _nat calculates

tne magnituae of the posltion and velocity vectors of a

satellite, given tne Keplerian elements through dynamic

array KEPLER and the gravitational constant times the mass

of the central body through dynamic array GMC. The dynamic

arrays involved are as follows:

Dynamic Arrays I/__O Dimension

KEPLER I 6

GMC I l

POSMAG O 1

VELMAG O 1

The solution program for this problem is specified Oelow.

Underlined routines indicate GMAS service routines used.

SUBROUTINE MAG(KEPLER,GMC,POSMAG,VELMAG,IFRN, IERR)

COMMON/DIMCOM/il,JI,KI, I2,J2, K2, I3,J3 ,K3, I4,J4,K4)

DIMENSION KEPLEk(il; ,GMC(I2) ,POSMAG(I3) ,VELMAG([4)

DIMENSION PV(3) ,VV(3)

CALL CELEM(KEPLER,GMC,PV,VV)

POSMAG=SQRT (FDOT (PV, PV, 3))

VE_ .MAG=SQRT (FDOT (VV, VV, 3))

_ETURN

END

6-32

SECTION 7 - MISCELLANEOUS GMAS CAPABILITIES

Since _nis oocumen_ is a primer, it does not cover all as-

pects or capaDil1_ies o£ GMAS an_ iss connectea software.

This section introduces some of t_e GMAS capabilities not

covered in the primer and speci£ies appropriate sources of

reference for these capabilities for interested readers.

7.1 GMAS INTERACTIVE MODE

Although this document deals only with GMAS in the batch

mode (i.e., input via card deck), GMAS can also be run in an

interactive mode using one of the GSFC cathode ray tube

(CRT) graphics terminals (IBM 2250, IBM 2260,

Anagrapn 6600). In the interactive mode, automatic se-

quences can be edited and created (automatic mode), or util-

ities can De executed individually a% the user's discretion

(manual moae). Section 4 of the User's Guide presents a

complete description of GMAS interactive capabilities and

operatlng ins_ruc%ions.

7.2 GMAS AUTOMATIC SEQUENCE LIBRARIES

GMA_ has a library o£ preexisting automatic sequences.

These automatic sequences can De accessed by replacing

SE_N_ ='CARDS' w1_n SEQN_ ='automatic sequence name' in

NAMELIST GMASEX.

In Section 5.6 of this document, the preexisting automatic

sequence MEANEL is used to create mean elements to be input

in the averaged orbit propagator. The user can develop his

own library of au%omatlc sequences to complement those ex-

isting in the GMAS library. The user must include the card

//FT04F001 DD DSN = 'use_ic.userfilename. DATA',D ISP=SHR

where one user'_ ftle f3 a _artitioned data set (PDS) whose

members are automatic _equences (sequential dana sets)f

record length 60_.

7-1

Preexisting automatic sequences are of very little value
unless the user has a metnoa of updating them. Section 3.3

of the User's Guide describes the GMASautomatic sequence

updating procedure.

7.3 GESS EXECUTIVE

The Graphic E×ecu_ive Support System (GESS) is a large sys o

%em tha_ provides not only an interactive grapnics capabil-

ity, Dut also a variety of user services. Reference 7

provides a aetailed aescription of GESS.

7.4 IOHAND

IOHAND is an input/output hanaler program originally devel-

opea _or _he Graphics Mission Operations Support System

(GMOS_;. Al_hougn i_ is not a GMAS utility, IOHAND may be

useful to GMAS users performing online support functions.

Sectlon 4.1 of the Software Resources document provides a

complete description of IOHAND.

7-2

REFERENCES

•

.

,

•

.

•

Computer Sciences Corporation, CSCI/SD-80/6028, Goddard

Mission Analysis System (GMAS) System Description,
G. A. Snyder and E. J. Smith, June 1980

--, CSC/SD-79/6059, Goddard Mission Analysis System

(GMAS) User's Guide, G. A. Snyder and E. J. Smith, May
1979

--, CSC/SD-79/6079, Software Resources for Use With the

Goddard Mission Analysis System (GMAS), G. A. Snyder,
October 1979

--, CSC/SD-79/6079UDI, Updates to Software Resources for

Use With the Goddard Mission Anal_zsis System (GMAS),
G. A. Snyder, March 1980

--, CSC/SD-79/6079UD2, Updates to Software Resources for

Use With tne Goddard Mission Anaizsis System (GMAS),
D. C. Folta and W. T. Wallace, November 1980

International Business Machines Corporation,

GC28-6515-9, IBM System/360 and System/370 FORTRAN IV
Language, Octooer 1972

Computer Sciences Corporation, CSC/SD-75/6057, Gra?nic

Executive Support System (GESS) User's Guide, J. Hoover
et al., August 1975

R-i

